
D5.1 MARIO Ontology Network

Project Acronym: MARIO

Project Title: Managing active and healthy aging with use
of caring service robots

Project Number: 643808
Call: H2020-PHC-2014-single-stage
Topic: PHC-19-2014
Type of Action: RIA

c© MARIO consortium Page 1 of 73

Ref. Ares(2016)4012601 - 30/07/2016

643808

D5.1

Work Package: WP5

Due Date: M18

Submission Date: 31/07/2016

Start Date of Project: 01/02/2015

Duration of Project: 36 months

Organisation Responsible of Deliverable: CNR

Version: 1.0

Status: final

Author name(s): Luigi Asprino, Aldo Gangemi, Stefano Nolfi, Andrea
Giovanni Nuzzolese, Nico Pisanelli, Valentina Presutti,
Alessandro Russo

Reviewer(s): reviewers

Nature:
R − Report P − Prototype

D − Demonstrator O − Other

Dissemination level:

P − Public
CO − Confidential, only for members of the
consortium (including the Commission)
RE − Restricted to a group specified by the
consortium (including the Commission Services)

Project co-funded by the European Commission within the Horizon 2020 Programme (2014-2020)

c© MARIO consortium Page 1 of 73

643808

Copyright c© 2015, MARIO Consortium

The MARIO Consortium (http://www.mario-project.eu/) grants third parties the right to use
and distribute all or parts of this document, provided that the MARIO project and the docu-
ment are properly referenced.

THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEG-
LIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCU-
MENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

c© MARIO consortium Page 2 of 73

643808

Revision history
Version Date Modified by Comments

0.1 20/05/2016 Luigi Asprino and
Alessandro Russo

First draft, document
structure

0.2 30/05/2016 Valentina Presutti Revise of document
structure

0.3 07/06/2016 Luigi Asprino Added draft about
background

0.4 12/06/2016 Luigi Asprino Added draft about
MARIO Ontology
Network (MON)

0.5 20/06/2016 Andrea Giovanni
Nuzzolese

Added draft about
the Knowledge Man-
agement System
(KMS)

0.6 24/06/2016 Valentina Presutti Draft review

0.7 05/07/2016 Luigi Asprino and
Andrea Giovani
Nuzzolese

Document revi-
sion according to
Valentina Presutti’s
review

0.8 13/07/2016 Luigi Asprino and
Andrea Giovani
Nuzzolese

Revised the descrip-
tion of ontologies
and the architecture
of the KMS

0.9 13/07/2016 Luigi Asprino and
Andrea Giovani
Nuzzolese

Document revision
according to Mario
internal quality
control procedure
(reviewers: PAS-
SAU, NUIG and
IRCSS)

1.0 28/07/2016 Valentina Presutti added Intro and
Conclusion

c© MARIO consortium Page 3 of 73

Executive Summary

This document presents the Mario Ontology Network and its related management software
framework.

MARIO is an assistive robot that has to support a set of knowledge-intensive tasks aimed
at (i) helping patients affected by dementia to feel more autonomous and less lonely, (ii)
supporting carers in their activity to assess the patient’s cognitive condition. Examples of
knowledge-intensive tasks are the Comprehensive Geriatric Assessment (CGA) and the trig-
gering of appropriate entertainment activities. MARIO has also to address a number of
behavioural tasks such as to drive the patient to a specific location (e.g. the bathroom) and
identifying searched objects (e.g. keys).

In order to enable this tasks MARIO features a set of abilities implemented by pluggable
software components. MARIO abilities, when executed, contribute to and benefit from a com-
mon knowledge base. For example, MARIO ability to accompany a patient to the bathroom
retrieves the information needed about the physical environment from MARIO knowledge
base and stores the information that such an event happened at a certain date/time in the
same knowledge base. Another example is the ability to entertain the patient by playing mu-
sic, which retrieves music tracks from the knowledge base and stores liking feedback about
them in order to reuse such knowledge in future executions. As for the CGA the associated
ability retrieves questions to be posed to the patient from the knowledge base and stores the
obtained answers and all associated relevant metadata.

This examples shows the need to provide MARIO abilities with a common knowledge
base able to cover all relevant knowledge areas as well as mechanisms for organising, ac-
cessing, storing and interacting with such knowledge base (i.e. MARIO background knowl-
edge). This requirement is fulfilled by the MARIO Knowledge Management System, which
consists of:

• A set of interconnected and modularised ontologies, i.e. the MARIO Ontology Net-
work (MON), which is meant to model all knowledge areas that are relevant for MARIO
abilities.

• A set of software interfaces that provide abilities with high level access to MON and its
associated knowledge base. Such interfaces are automatically generated by a software
framework, named Lizard, that allows to smoothly update them when some ontology
change occurs.

• A reasoning component that supports the production of inferred knowledge.

c© MARIO consortium Page 4 of 73

Contents

1 Introduction 10

1.1 Work Package 5 Objectives . 10

1.2 Purpose and Target Group of the Deliverable 11

1.3 Relations to other Activities in the Project . 11

1.4 Document Outline . 12

1.5 About MARIO . 12

2 Background 13

2.1 Semantic Web Languages: RDF, OWL and SPARQL 13

2.1.1 Extensible Markup Language (XML) . 13

2.1.2 Resource Description Framework (RDF) 13

2.1.3 Web Ontology Language (OWL) . 15

2.1.4 SPARQL . 15

2.2 Pattern-based Ontology Design . 15

2.2.1 Ontology design patterns . 16

2.2.2 eXtreme Design . 17

2.3 Graphical notation . 18

3 MARIO Ontology Network 19

3.1 MARIO Ontology Network Knowledge areas . 19

3.2 Ontology design methodology . 22

3.3 MON modules . 24

3.3.1 Framester . 25

3.3.2 CGA ontology . 29

c© MARIO consortium Page 5 of 73

643808

3.3.3 Tagging ontology . 40

3.3.4 Affordance ontology . 43

4 Mario Knowledge Management System 50

4.1 Lizard . 51

4.1.1 Requirements . 52

4.1.2 Modules and use cases . 54

4.2 Mario Ontology Network API . 63

4.3 Reasoner . 65

4.4 Architecture . 66

c© MARIO consortium Page 6 of 73

List of Figures

1.1 Input-output relations between Task 5.1 - the outcome of which is the subject
of this report - and other work packages in the project. 11

2.1 The Semantic Web stack. 14

2.2 An example of collected uses-story. 16

3.1 The XD workflow as extended in [49] . 23

3.2 Top level o the MON . 26

3.3 Framester: frame-based lexical linked data. The set of resources that com-
pose Framester and the interlinks between them. 29

3.4 An example of Framester representation for the concept G suit. 30

3.5 The UML class diagram of CGA ontology. 32

3.6 The UML class diagram of the Co-Habitation status ontology. 34

3.7 The UML class diagram of the Medication Use ontology. 35

3.8 The UML class diagram of the Capability Assessment ontology. 36

3.9 The UML class diagram of the SPMSQ ontology. 36

3.10 The UML class diagram of the ESS ontology. 38

3.11 The UML class diagram of the CIRS ontology. 40

3.12 The UML class diagram of the MNA ontology. 41

3.13 The UML class diagram of tagging ontology. 42

3.14 Two equivalent action-selection schemes. 45

3.15 The UML class diagram of the Affordance ontology 46

4.1 Informal architecture of the Mario Knowledge Management System. 50

4.2 High-level diagram presenting the intuition behind Lizard. 52

4.3 UML diagram representing the use cases associated with Lizard core. 54

c© MARIO consortium Page 7 of 73

643808

4.4 UML diagram representing the use cases associated with Lizard API Manager. 58

4.5 UML diagram representing the use cases associated with the MON API. 63

4.6 UML component diagram representing the software architecture of the MARIO
KMS. 66

c© MARIO consortium Page 8 of 73

List of Tables

3.1 Knowledge areas and their association with the use cases identified in WP1. . 19

3.2 Ontology modules imported/reused by the CGA ontology. 31

3.3 Competency questions answered through the Co-Habitation status ontology. . 34

3.4 Competency questions answered through the Medication Use ontology. 35

3.5 Competency questions answered through the Capability Assessment ontology. 37

3.6 Competency questions answered through the SPMSQ ontology. 37

3.7 Competency questions answered through the ESS ontology. 39

3.8 Competency questions answered through the CIRS ontology. 39

3.9 Competency questions answered through the Tagging ontology. 42

3.10 Ontology modules imported/reused by the Tagging ontology. 43

3.11 Competency questions answered through the Affordance ontology. 46

3.12 Ontology modules imported or re-used by the Affordance ontology. 47

c© MARIO consortium Page 9 of 73

Introduction

This deliverable presents the Mario Ontology Network (MON) and its related management
software. The main objective of the work here described is to provide MARIO robots with the
needed infrastructure to organise, query and interpret their background knowledge. MARIO
background knowledge consists of: lexical knowledge (e.g. natural language lexica and lin-
guistic frames), domain knowledge (e.g. cga, personal sphere), environmental knowledge
(e.g. physical locations and maps), sensor knowledge (e.g. RFID, life mesures), and meta-
data knowledge (e.g. entity tagging).

The key outcome of this work is a set of networked ontology modules and a set of soft-
ware components. The networked ontology modules are identified by the name MON, while
a software framework named “Lizard” provides a middleware between MARIO abilities, i.e.
software applications that implement MARIO behaviour and capabilities, and MARIO back-
ground knowledge allowing its manipulation.

1.1 Work Package 5 Objectives

The key objectives of Work Package 5 can be summarised as follows:

• providing MARIO robots with the means for creating, organising, querying and reason-
ing over a background knowledge base (e.g. to store/retrieve user’s personal informa-
tion) - Task 5.1

• providing MARIO with the ability to process natural language input, to recognise rele-
vant location-aware requests and to react appropriately (e.g. to understand if the user
wants to know where she is now located and to provide a correct answer) - Tasks
5.2-5.4

• providing MARIO with the ability to evaluate and possibly reuse the sentiment polarity
of natural language expressions (e.g. to assign a sentiment score to a user’s feedback
about a certain activity and reuse it to decide whether to re-propose or discard that
activity later) - Task 5.3

This deliverable addresses Task 5.1.

c© MARIO consortium Page 10 of 73

643808

Figure 1.1: Input-output relations between Task 5.1 - the outcome of which is the subject of
this report - and other work packages in the project.

1.2 Purpose and Target Group of the Deliverable

This report provides details about the ontologies that are currently available in MON and
its supporting software. Its target is the group of developers of MARIO’s abilities, who can
leverage the outcome of this work by reusing MARIO knowledge base and the available
functionalities that support its manipulation. In other words, developers of MARIO’s abilities
can rely on MON for querying and storing knowledge and on Lizard for accessing and reusing
it.

1.3 Relations to other Activities in the Project

The work described in this deliverable has been mainly affected by Deliverable 1.2 “Mario
Functionalities and Requirements”, and Deliverable 1.3 “Data Management and System Ar-
chitecture”. These deliverables constituted the key input for this work together with the on-
going work of Task 4.1 “Customization of the comprehensive geriatric assessment (CGA)
approach to the service robot context”, Task 8.1 “Pilot Planning, Management and Coordi-
nation” and the other tasks in Work Package 5 and Work Package 6. The output of this
deliverable and its further extensions1 is input to the other tasks in Work Package 4, 5 and 6.
This input-output relations are summarised in Figure 1.1.

1Notice that the work on MON is still continuing and will accompany the whole duration of Work Package 6
and 8 in order to ensure that MARIO knowledge base will address and adapt to all emerging requirements.

c© MARIO consortium Page 11 of 73

643808

1.4 Document Outline

The document is organised as follows: Chapter 2 provides some background on Semantic
Web technologies and ontology design methodologies that have been used for producing
the output of this work. It also provides some guidelines for the used notation. Chapter 3
discusses the knowledge areas that are covered by the Mario Ontology Network. These
knowledge areas have been identified by analysing MARIO functionalities and requirements
(Task 1.2). The chapter also provides details, i.e. ontology design methodologies, specific
requirements and design choices, about the ontology modules that are currently available
in MON. Chapter 4 presents the software framework that supports the usage of MON and
depicts the implemented software architecture.

1.5 About MARIO

MARIO addresses the difficult challenges of loneliness, isolation and dementia in older per-
sons through innovative and multi-faceted inventions delivered by service robots. The effects
of these conditions are severe and life-limiting. They burden individuals and societal support
systems. Human intervention is costly but the severity can be prevented and/or mitigated by
simple changes in self-perception and brain stimulation mediated by robots.

From this unique combination, clear advances are made in the use of semantic data analyt-
ics, personal interaction, and unique applications tailored to better connect older persons to
their care providers, community, own social circle and also to their personal interests. Each
objective is developed with a focus on loneliness, isolation and dementia. The impact centres
on deep progress toward EU scientific and market leadership in service robots and a user
driven solution for this major societal challenge. The competitive advantage is the ability to
treat tough challenges appropriately. In addition, a clear path has been developed on how to
bring MARIO solutions to the end users through market deployment.

c© MARIO consortium Page 12 of 73

Background

MARIO’s Knowledge Base System relies on Semantic Web technologies including languages,
tools and methodologies at the state-of-the-art in knowledge management system. This sec-
tion provides an overview of these technologies.

2.1 Semantic Web Languages: RDF, OWL and SPARQL

The Semantic Web is an extension of the Web aims at providing a common framework that
allows data to be shared and reused across application boundaries. Standardisation for Se-
mantic Web is under the care of World Wide Web Consortium (W3C). The W3C standards for
the Semantic Web mainly include: XML, RDF(S), OWL and SPARQL. Figure 2.1 shows the
semantic web stack and provides an overview of the standard technologies recommended
by the W3C.

2.1.1 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a markup language that defines a set of rules for
encoding documents in a both human-readable and machine-readable format. An XML doc-
ument consists of a properly nested set of open and close tags, where each tag can have a
number of attribute-value pairs. Crucial to XML is that the vocabulary of the tags and their
allowed combinations is not fixed, but can be defined per application of XML. In the Seman-
tic Web context, XML is being used as a uniform data-exchange format thus providing a
common syntax for exchange data across the web.

2.1.2 Resource Description Framework (RDF)

Resource Description Framework (RDF)1 is a W3C recommendation originally designed as
metadata model, it has being used as a general framework for modelling information. The
basic construction in RDF is the triple <subject, preficate, object>. The subject denotes

1RDF, W3C Recommendation https://www.w3.org/TR/rdf11-concepts/

c© MARIO consortium Page 13 of 73

https://www.w3.org/TR/rdf11-concepts/

643808

Figure 2.1: The Semantic Web stack.

a resource and the predicate expresses a relationship between the subject and the object
(which can be a value or another resource). For example, a way for representing the notion
“The author of War and Peace is Leo Tolstoy ” is

:War and Peace :author :Leo Tolstoy

where :War and Peace and :Leo Tolstoy are the Uniform Resource Identifiers (URIs) of two
resources representing respectively the book titled “War and Peace” and the writer “Leo
Tolstoy”, and :author is the URI of the predicate “author” which is used to connect a book
to its author. It is easy to see that an RDF model can be seen as a graph where nodes are
values or resources and edges are properties. Several common serialisation formats of RDF
are in use, including: TURTLE2, RDF/XML3, N-Triples4.

RDF Schema (RDFS)5 provides a data-modelling vocabulary for RDF data. RDFS is an
extension of RDF aims at providing basic elements for structuring RDF resources. It allows
to define: Classes, Properties, Datatypes and Hierarchies for both classes and properties.

2TURTLE, https://www.w3.org/TR/turtle/
3RDF/XML, https://www.w3.org/TR/rdf-syntax-grammar/
4N-Triples, https://www.w3.org/TR/n-triples/
5RDFs, W3C Recommendation https://www.w3.org/TR/rdf-schema/

c© MARIO consortium Page 14 of 73

https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/rdf-schema/

643808

2.1.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL)6 is a semantic markup language for defining, publishing
and sharing ontologies on the World Wide Web. OWL can be used to explicitly represent the
meaning of terms in vocabularies and the relationships between those terms. This represen-
tation of terms and their interrelationships is called ontology. OWL is part of the Semantic
Web stack (see Figure 2.1) and it is complementary to XML, RDF and RDFS:

• XML provides a surface syntax for structured documents, but imposes no semantic
constraints on the meaning of these documents;

• RDF is a datamodel for resources and relations between them. It provides a simple
semantics for this datamodel;

• RDFS is a vocabulary for describing properties and classes of RDF resources, with a
semantics for generalisation-hierarchies of such properties and classes;

• OWL adds constructs for describing properties and classes: among others, relations
between classes (e.g. disjointness), cardinality (e.g. ”exactly one”), equality, richer
typing of properties, characteristics of properties (e.g. symmetry), and enumerated
classes.

2.1.4 SPARQL

SPARQL7 is a query language for retrieving and manipulating data store in RDF format. Most
forms of SPARQL queries contain a set of triple patterns called a basic graph pattern. Triple
patterns are like RDF triples except that each of the subject, predicate and object may be
a variable (denoted by a question mark). A basic graph pattern matches a subgraph of the
RDF data when RDF terms from that subgraph may be substituted for the variables and the
result is RDF graph equivalent to the subgraph. For example, the following SPARQL query
retrieves pairs book together with its author author :

SELECT ?book ?author WHERE {?book :author ?author}

2.2 Pattern-based Ontology Design

The notion of “pattern” has proved useful in design, as exemplified in diverse areas, such as
software engineering. Under the assumption that there exist classes of problems that can be
solved by applying common solutions (as has been experienced in software engineering), it is
suggested to support reusability on the design side specifically. To this end Ontology Design

6OWL, W3C Recommendation https://www.w3.org/TR/owl-ref/
7SPARQL, W3C Recommendation https://www.w3.org/TR/rdf-sparql-query/

c© MARIO consortium Page 15 of 73

https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/rdf-sparql-query/

643808

Figure 2.2: An example of collected uses-story.

Patterns (ODPs) have been proposed as modeling solutions to recurrent ontology design
problems. ODPs are modeling components that can be used as basic building blocks of an
ontology network. eXtreme Design (XD) is an ontology design methodology that supports
the pattern-based approach. In MARIO we adopted XD as methodology for the ontology
design and we extensively reused ODPs. Sections 2.2.1 and 2.2.2 briefly introduce ODPs
and XD, respectively.

2.2.1 Ontology design patterns

Ontology Design Patterns (ODPs) [20] is an emerging technology that favors the reuse of
encoded experiences and good practices. ODPs are modeling solutions to solve recurrent
ontology design problems. They can be of different types including: (i) logical, which typi-
cally provide solutions for solving problems of expressivity e.g., expressing n-ary relations in
OWL; (ii) architectural, which describe the overall shape of the ontology (either internal or
external) that is convenient with respect to a specific ontology-based task or application e.g.
a certain DL family; (iii) content, which are small ontologies that address a specific modeling
issue, and can be directly reused by importing them in the ontology under development e.g.,
representing roles that people can play during certain time periods; (iv) presentation, which
provide good practices for e.g. naming conventions.

c© MARIO consortium Page 16 of 73

643808

2.2.2 eXtreme Design

eXtreme Design (XD) [48, 6, 49] is a family of methods and associated tools, based on the
application, exploitation, and definition of ontology design patterns (ODPs) for solving ontol-
ogy development issues. XD principles are inspired by those of the agile software method-
ology called eXtreme Programming (XP). The main idea of agile software development is to
be able to incorporate changes easily, in any stage of the development. Instead of using a
waterfall-like method, where you first do all the analysis, then the design, the implementation
and finally the testing, the idea is to cut this process into small pieces, each containing all
those elements but only for a very small subset of the problem. XD is test-driven, and ap-
plies the divide-and-conquer approach as well as XP does. Also, XD adopts pair design, as
opposed to pair programming. The main principles of the XD method can be summarised as
follows:

• Customer involvement and feedback. The customer should be involved in the on-
tology development and its representative should be aware of all parts of the ontology
project under development. Interaction with the customer representative is key for fa-
voring the explicit expression of the domain knowledge.

• Customer stories and Competency Questions. The ontology requirements and its
tasks are described in terms of small stories by the customer representative. Design-
ers work on those small stories and, together with the customer, transform them in the
form of Competency Questions [25] (CQs). CQs will be used through the whole devel-
opment, and their definition is a key phase as the designers have the challenge to help
the customer in making explicit as much implicit knowledge as possible. At the begin-
ning of the task T5.1 we asked all the partners to provide their stories. The template
for providing the stories is shown in Figure 2.2. The fields “Partner ”, “Scriber ”, “e-mail”
were used for asking further clarification about the story. The Title field helped for a bet-
ter understanding the main focus of the story. The “Priority ” field was used to choose
the stories to treat first. The allowed values were High, Medium and Low. “Depends
on” allowed to specify a link between two stories. For example, if a story was too long,
it could be split into two stories and this field allowed one to express the dependency.
The last field “Knowledge area(s)” was used for associating the story with one or more
knowledge areas which the story belonged to. The customer stories collected together
with the resulting Competency Questions can be retrieved on-line8. Other competency
questions have been extracted by analysing domain documents, such as those used
for effectuating a Comprehensive Geriatric Assessment (CGA) of a patient.

• Content Pattern (CP) reuse and modular design. A development project is char-
acterised by two main sets: (i) the problem space composed of the actual modelling
issues that have to be addressed during the project which are called “Local Use Case”
(LUC); (ii) the solution space made up of reusable modelling solutions, called “Global
Use Case” (GUC), representing the problem that a certain ODP provides a solution for.

8http://etna.istc.cnr.it/mario/D5.1/.

c© MARIO consortium Page 17 of 73

http://etna.istc.cnr.it/mario/D5.1/

643808

If there is a CP’s GUC that matches a LUC it has to be reused, otherwise a new module
is created. An analysis of the possible strategies for reusing CP is provided by [49].

• Collaboration and Integration. Collaboration and constant sharing of knowledge is
needed in a XD setting, in fact similar or even the same CQs and sentences can be
defined for different stories. When this happens, it means that these stories can be
modelled by reusing a set of shared CPs.

• Task-oriented design. The focus of the design is on that part of the domain of knowl-
edge under investigation that is needed in order to address the user stories, and more
generally, the tasks that the ontology is expected to address.

• Test-driven design. A new story can be treated only when all unit tests associated
with it have been passed. An ontology module developed for addressing a certain user
story associated to a certain competency question, is tested e.g. (i) by encoding in
the ontology a sample set of facts based on the user story, (ii) defining one or a set of
SPARQL queries that formally encode the competency question, (iii) associating each
SPARQL query with the expected result, and (i) running the SPARQL queries against
the ontology and compare actual with expected results.

2.3 Graphical notation

The Ontology Definition Metamodel (ODM)9 is a standard adopted in 2006 that defines a
set of UML metamodels and profiles for development of RDF and OWL. The UML profiles
in the ODM specification adapt UML notations to provide a form of visual representation for
RDF and OWL. In order to improve the effectiveness of the communication between domain
experts and ontology engineers an extendion of the ODM OWL profile was provided by [48],
who introduced a stereotype for component diagrams that enables the representation of
Ontology Design Patterns. In this document we use this extended ODM notation for providing
a graphical for representation of the ontology network and its modules.

9Ontology Definition Metamodel (ODM), http://www.omg.org/spec/ODM/

c© MARIO consortium Page 18 of 73

http://www.omg.org/spec/ODM/

MARIO Ontology Network

3.1 MARIO Ontology Network Knowledge areas

The MARIO Ontology Network (MON) is composed of different ontologies that cover different
knowledge areas that are relevant to MARIO in order to make it a cognitive agent able to sup-
port older patient affected by dementia. The knowledge areas were identified by analysing
the use cases emerged from the system specification carried on for Pilot 1 in the context of
the Work Package 1 [4]. These uses cases mainly describe actions and behaviours featuring
the MARIO robots. Nevertheless, they also provide us with detailed descriptions about the
nature of the knowledge that the robot should deal with in order to perform and select ac-
tions and behaviours, respectively. Hence, we highlighted, for each use case, the knowledge
domains required to address such a use case. This process was driven by the identification
of the competency questions [25] from the textual descriptions of the use cases. We remark
that in knowledge engineering the competency questions are commonly identified as the re-
quirements that an ontology has to address. Thus, the knowledge domains emerged from
the competency questions we collected, i.e. the knowledge domains identify the topics that
specific competency questions answers to. Finally, we gathered a set of top-level knowledge
areas by iteratively generalising the knowledge domains by adopting a method similar to the
Gronded Theory [55], which is a method often used in Social Sciences to extract relevant
concepts from unstructured corpora of natural language resources (e.g., texts, interviews, or
questionnaires).

Table 3.1 reports the association of the knowledge areas we identified so far with the use
cases analysed in [4]. Each knowledge area is reported along with a brief description that
explains its applicability.

Table 3.1: Knowledge areas and their association with the use cases identified in WP1.

Knowldge area Description Related use cases

Personal sphere

People information,
information about
relationship among
people, contacts etc.

UC3.1.1.5 Capture and load
personal data for the user
UC3.1.1.12 Set up users
UC3.1.3.2 Assist the user
with information about people

c© MARIO consortium Page 19 of 73

643808

UC3.1.6.2 CGA: Question
User about Family

Life events and
patterns

Information about
everyday events,
memories, scheduling,
plans etc.

UC3.1.3.1 Add Events
UC3.1.3.4 Help the user
carry out a sequence of
actions
UC3.1.3.5 Inform the user
about events
UC3.1.3.6 Suggest things the
user can do
UC3.1.6.3 CGA: Question
user about Daily Living
activity
UC3.1.6.8 Monitor the daily
pattern of the user

Social and multimedia
content

Online social network
community, multimedia
content such as
photos, videos, movies,
documents

UC3.1.1.1 Choose and pre-
load Games for the User
UC3.1.1.2 Choose and pre-
load Music for the User
UC3.1.1.3 Choose and pre-
load Videos for the User
UC3.1.2.2 Play Music for the
User
UC3.1.2.3 Play a Game with
the User
UC3.1.2.4 Read a text to the
User
UC3.1.2.5 Show a video to
the User

Environment
Information about
rooms, furnitures,
objects etc.

UC3.1.1.8 Name Locations
and rooms on the map
UC3.1.1.11 Map Operating
Environment
UC3.1.3.3 Assist the user
with information about place
and locations
UC3.1.4.1 Approach the user
UC3.1.4.2 Identify the User in
the Immediate Area
UC3.1.4.3 Search for the
User in the Operating Envi-
ronment
UC3.1.6.9 Record where the
user goes and what they do
during the day

c© MARIO consortium Page 20 of 73

643808

Health sphere

Information about living
patterns, health
patterns, vital signs,
anything related to CGI
and MPI

UC3.1.6.1 CGA: Assess the
user when using a Telephone
UC3.1.6.2 CGA: Question
User about Family
UC3.1.6.3 CGA: Question
user about Daily Living
activity
UC3.1.6.4 Question User to
Establish Emotional State
UC3.1.6.5 Carry out a CGA
assessment on the user
UC3.1.6.6 Generate Health
reports for the care staff
UC3.1.6.7 Monitor the Health
of the user
UC3.1.6.8 Monitor the daily
pattern of the user
UC3.1.6.9 Record where the
user goes and what they do
during the day
UC3.1.8.1 Ask the user a se-
ries of questions to establish
facts about them, or examine
their heath or how they are
feeling.

Emotional sphere

Information about
emotions, sentiments,
interests, opinions
related to people etc.

UC3.1.6.4 Question User to
Establish Emotional State
UC3.1.7.3 Identify and re-
member what the user likes
UC3.1.7.4 Show the User
some items from the generic
reminiscence store that
match their era.
UC3.1.7.5 Show the User
some items from their per-
sonal reminiscence store.
UC3.1.8.1 Ask the user a se-
ries of questions to establish
facts about them, or examine
their heath or how they are
feeling.

Open knowledge
Speech-derived data,
web-extracted data etc.

UC3.1.3.5 Inform the user
about events
UC3.1.3.6 Suggest things the
user can do

c© MARIO consortium Page 21 of 73

643808

UC3.1.8.1 Ask the user a se-
ries of questions to establish
facts about them, or examine
their heath or how they are
feeling.

Regulatory sphere
Information about
norms, rules, social
habits etc.

UC3.1.3.4 Help the user
carry out a sequence of
actions
UC3.1.3.6 Suggest things the
user can do

MARIOcpetion Information about
MARIO abilities,
MARIO functional-
ities, applications
MARIO is able to run,
actions MARIO is able
to do etc.

This knowledge area is or-
thogonal to all the use cases

3.2 Ontology design methodology

The MON is designed by following best design practices and pattern-based ontology engi-
neering methods aimed at extensively re-using Ontology Design Patterns (ODPs) [20]. Ac-
cording to [20], ODPs are modeling solutions that can be re-used in order to solve recurrent
ontology design problems. Hence, they enable design by-reuse methodologies. For example,
ODPs can be re-used by means of their specialisation or composition according to their types
and to the scope of the new ontology that is going to be modelled. The design methodology
that we followed is based on the eXtreme Design [6, 48] (cf. Section 2.2.2). The eXtreme
Design (XD) is an agile design methodology developed in the context of the NeON project1.
XD is inspired by the eXtreme Programming (XP). In fact, like XP, it emphasises incremental
development and recommends pair development, test driven development, refactoring, and
a divide-and-conquer approach to problem-solving [17]. Additionally, XD uses competency
questions as a reference source for the requirement analysis and associates ODPs with
generic use cases in the solution space. The problem space is composed of local use cases
that provide descriptions of the actual issues. Use cases represent problems that ODPs
provide solutions to. Both global and local use cases are competency questions expressed
in natural language. The separation of use cases and the way in which the latter are ex-
pressed makes possible to match local use cases against global use cases. This matching
conveys suitable ODPs to be exploited for solving modelling problems. The XD methodology
is implemented by the XD tool that is available as a plug-in for both the NeON platform and
TopBraid composer2. Recently [26] proposed an extension3 of XD that enables its usage in

1http://www.neon-project.org/nw/.
2http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
3https://github.com/hammar/webprotege.

c© MARIO consortium Page 22 of 73

http://www.neon-project.org/nw/
http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
https://github.com/hammar/webprotege

643808

Figure 3.1: The XD workflow as extended in [49]

the WebProtégé4. This extensions allows to combine the benefit of the agile ontology devel-
opment process provided by XD and a modern collaborative ontology engineering platform
consisting of WebProtégé.

Figure 3.1 shows the XD workflow we extended in [49]. Such an extension mainly fo-
cuses on providing ontology engineer with clear strategies for ontology re-use. Ontology
re-use models can be classified based on (i) the type of reused ontology (e.g. foundational,
top-level, ontology design patterns, domain ontologies), (ii) the type of reused ontology frag-
ment (e.g. individual entities, modules, ontology design patterns, arbitrary fragments), (iii)
the amount of reused axioms (e.g. import of all axioms, of only axioms in a given neighbour-
hood of an entity, of no axioms), (iv) and the alignment policy (e.g. direct reuse of entities,
reuse via equivalent relations such as rdfs:subClassOf and owl:equivalentClass). For the
development of the MON we configured XD in order to have an indirect re-use of ontology
design patterns and alignments. ODPs are used in this case as templates. At the same
time, the ontology guarantees interoperability by keeping the appropriate alignments with
the external ODPs, and provides extensions that satisfy more specific requirements. The
alignment axioms may be published separately from the core of the ontology. If the ontology
needs further extensions, the same approach must be followed in order to avoid the introduc-
tion of dependencies. With this type of re-use, the potential impact of possible changes in the
external ODP is minimised. In fact, if incoherences or changes should occur in the external

4http://webprotege.stanford.edu/.

c© MARIO consortium Page 23 of 73

http://webprotege.stanford.edu/

643808

ODP (which is rather unlikely to happen) then the redesign process would very simple. The
ontology signature and axioms would remain unchanged, as incoherences or changes would
be resolved by simply removing or revising the alignment axioms.

3.3 MON modules

Figure 3.2 shows the top level of the MON. The top level is identified by the OWL ontologies
connected to the MARIO ontology (i.e., mario.owl5) by green arrows. The arrows, indepen-
dently from their colors, represent owl:imports axioms. Each ontology module connected to
the top level MARIO ontology identifies a knowledge area as introduced in Section 3.1 and
is itself a broader conceptualisation built on top of more specific ontology modules. Such
modules are, in turn, built by means of re-use of ontology design patterns according to our
ontology design methodology. In next sections we detail the ontology modules of the MON
(i.e., framester, cga, affordance and tagging) that we developed so far and are relevant to the
Pilot 1. Other ontology modules are part of our ongoing work and will be developed, released
and assessed by next tasks part of the Work Package 5 (i.e. T5.2 - Robot Raeading and Lis-
tening component and T5.3 - Robot Sentiment Aalysis) and the Work Package 6 (i.e. T6.1 -
Development of MARIO’s behavioural capabilites and T6.2 - Development of MARIO’s social
skills), respectively. Nevertheless, we have already identified ontology modules that are not
currently implemented in the MON and that are part of our ongoing work, as aforementioned,
for next tasks. Namely, those modules are:

• the Computer-based Patient Record (CPR) Ontology6, which provides a modelling so-
lution for describing patient-related records;

• DogOnt7, which provides a suitable solution for describing domotic devices, the home
environmenthow and how architectural elements and furniture are placed inside the
home;

• the Emotion Ontology (MFOEM)8 Emotion Ontology for representing phenomena such
as emotions and moods;

• the Middle Layer Ontology for Clinical Care (MLOCC)9 that guarantees the exploitation
of well-founded and formalised medical concepts;

• the RECommendations Ontology (RECO)10 that provides domain-independent means
to describe user profiles and preferences in a coherent and context-aware way;

5The top level is available at http://www.ontologydesignpatterns.org/ont/mario/mario.owl.
6http://purl.org/cpr/0.9.
7http://elite.polito.it/ontologies/dogont.owl.
8http://www.ontobee.org/ontology/MFOEM.
9http://www.ifomis.org/chronious/mlocc.

10http://purl.org/reco.

c© MARIO consortium Page 24 of 73

http://www.ontologydesignpatterns.org/ont/mario/mario.owl
http://purl.org/cpr/0.9
http://elite.polito.it/ontologies/dogont.owl
http://www.ontobee.org/ontology/MFOEM
http://www.ifomis.org/chronious/mlocc
http://purl.org/reco

643808

• the Symptom Ontology (SYMP)11 that provides means to describe symptoms associ-
ated with deaseases.

In next sections we detail the ontology modules that have been implemented so far and
are part of the MON accordingly.

3.3.1 Framester

Many resources belonging to different domains are now being published on-line using Linked
Data principles to provide easy access to structured data on web. This includes many linguis-
tic resources that are already part of Linked Data, but made available mainly for the purpose
of being used by NLP applications.

When dealing with robot understanding, we need to integrate knowledge about the robot’s
physical context, linguistic knowledge, and knowledge about the world in general. Designing
a knowledge base for an assistive robot can be therefore considered a direct application of
the Linked Data paradigm, which provides interoperability across existing Linked Open Data
(world’s background knowledge), linguistic knowledge, user’s knowledge and robot’s sensor
knowledge. In order to create an adequate amount of background knowledge, and to make
it accessible to the robot, Framester12, a large “cloud” of linguistic and factual data has been
created which stands on the shoulders of a flexible and cognitively-sound theory of human
sense making, i.e. Frame Semantics [14].

Framester is intended to work as a knowledge graph/linked data hub to connect lexical re-
sources, NLP results, linked data, and ontologies. It is bootstrapped from existing resources,
notably the RDF versions of FrameNet [41], WordNet, VerbNet, and BabelNet, by interpret-
ing their semantics as a subset of (a formal version of) Fillmore’s frame semantics [14], and
semiotics [16], and by reusing or linking to off-the-shelf ontological resources including On-
toWordNet, DOLCE-Zero, Yago, DBpedia, etc.

State of the art

Two of the most important linguistic linked open data resources are WordNet [13] and FrameNet
[1]. They have already been formalised as semantic web resources, e.g. in OntoWordNet
[18], WordNet RDF [57], FrameNet RDF [41], etc. FrameNet allows to represent textual re-
sources in terms of Frame Semantics. The usefulness of FrameNet is limited by its limited
coverage, and non-standard semantics. An evident solution would be to establish valid links
between FrameNet and other lexical resources such as WordNet , VerbNet [30] and BabelNet
[39] to create wide-coverage and multi-lingual extensions of FrameNet. By overcoming these
limitations NLP-based applications such as question answering, machine reading and un-
derstanding, etc. would eventually be improved. Within MARIO these are important require-

11http://purl.obolibrary.org/obo/symp.owl.
12

c© MARIO consortium Page 25 of 73

http://purl.obolibrary.org/obo/symp.owl

643808

Figure 3.2: Top level o the MON

c© MARIO consortium Page 26 of 73

643808

ments, hence we developed Framester: a frame-based ontological resource acting as a hub
between e.g. FrameNet, WordNet, VerbNet, BabelNet, DBpedia, Yago, DOLCE-Zero, and
leveraging this wealth of links to create an interoperable predicate space formalised accord-
ing to frame semantics [14], and semiotics [16]. Data designed according to the predicates
in the predicate space created by Framester result to be more accessible and interoperable,
modulo alignments between specific entities or facts.

The closest resources to Framester are FrameBase [51] and Predicate Matrix [32].

FrameBase is aimed at aligning linked data to FrameNet frames, based on similar as-
sumptions as Framester’s: full-fledged formal semantics for frames, detour-based exten-
sion for frame coverage, and rule-based lenses over linked data. However, the coverage
of FrameBase is limited to an automatically learnt extension (with resulting inaccuracies) of
FrameNet-WordNet mappings, and the alignment to linked data schemas is performed man-
ually. Anyway, Framester could be combined with FrameBase (de)reification rules so that the
two projects can mutually benefit from their results.

Predicate Matrix is an alignment between predicates existing in FrameNet, VerbNet,
WordNet, and PropBank. It does not assume a formal semantics, and its coverage is limited
to a subset of lexical senses from those resources. A RDF version of Predicate Matrix has
been created in order to add it to the Framester linked data cloud, and (ongoing work) to
check if those equivalences can be reused in semantic web applications.

Ontology Description

Framester uses the D&S (Descriptions and Situations) knowledge pattern [17], which allows
to distinguish the reification of the intension of a predicate (a description) from the reification
of the extensional denotation of a predicate (a situation). A description d can define or reuse
concepts c1, ..., cn that can be used to classify entities e1...em involved in a situation s that is
expected to be compatible with d. For those reasons, D&S perfectly fits the core assumptions
of Fillmore’s frame semantics, by which a frame is a schema for conceptualising the inter-
pretation of a natural language text (and beyond), its denotation (a frame occurrence) is a
situation, and the elements (or semantic roles) of a frame are aspects of a frame, which can
be either obligatory, optional, inherited, reused, etc. Furthermore, D&S [17] takes into ac-
count a semiotic theory to integrate linguistic and formal semantics. It can therefore support
additional frame semantics assumptions such as evocation and semantic typing.

As described in [41], several recipes can be designed to interpret FrameNet frames and
frame elements as OWL classes, object properties, or punned individuals. Both Frame-
Base and Framester make use of the basic recipe that interprets frames as classes and
frame elements as properties. However, Framester goes deeper in providing a two-layered
(intensional-extensional) semantics for frames, semantic roles, semantic types, selectional
restrictions, and the other creatures that populate the world of lexical resources. The two-
layered representation is based on the Descriptions and Situations pattern framework [17],
and exploits OWL2 punning, so enabling both (intensional) navigation in the linked lexical

c© MARIO consortium Page 27 of 73

643808

datasets, and the reuse of lexical predicates as extensional classes or properties. The main
assumptions for Framester knowledge graphs are as follows:

1. A frame is a multigrade intensional predicate [42] f(e, x1, ..., xn), where f is a first-
order relation, e is a (Neo-Davidsonian) variable for any eventuality or state of affairs
described by the frame, and xi is a variable for any argument place, which could admit
several positions in case multiple entities are expected to be classified in a place.

2. OWL2 punning allows to represent a frame as either a class f v framester:Situation

(a subclass of the framester:Situation class, having situations as instances) or as an
individual f ∈ framester:Frame (an instance of the framester:Frame class).

3. Any word or multiword can evoke a frame: this is represented by means of a property
chain that connects a word entity to a (punned) frame.

4. Frame Projections include any projections of a frame relation. Assuming frame se-
mantics, each meaning consists of activated frames, whose formal counterparts are
multigrade intensional predicates. When only some aspect of that frame is consid-
ered, it can be formalized as a (typically unary or binary) projection of a frame relation.
Semantic role as well as co-participation relation are binary projections of a frame.

5. A frame occurrence (a situation denoted by text or data) s ∈ f is an instance of f and
the entities {e, x1...xn} involved in a situation are individuals.

Due to the expressivity limitations of OWL, some refactoring was needed to represent
frame semantics: frames are represented as both classes and individuals, semantic roles
and co-participation relations as both (object or datatype) properties and individuals, selec-
tional restrictions and semantic types as both classes and individuals, situations and their
entities as individuals. Frames and other predicates are represented as individuals when a
schema-level relation is needed (e.g. between a frame and its roles, or between two frames),
which cannot be represented by means of an OWL schema axiom (e.g. subclass, subprop-
erty, domain, range, etc.).

Figure 3.3 gives an overview of Framester modules and interlinks.

Example

Figure 3.4 shows how the D&S pattern framework (descriptions, situations, classification pat-
terns) is at the basis of Framester representation of the example predicate G suit. Related
notions from WordNet (wn:), BabelNet (bn:), FrameNet (fe:), DBpedia (dbr:), and DOLCE-
Zero (dul:) make linguistic and factual data linked by using Framester ontology (fschema:)
and data (framester:), and OWL logic (owl:, rdfs:). In practice, this automated integration
allows to represent any data coming from different resources (i.e. not only those depicted,
but all those that are associated with them in the Linked Open Data cloud) in a homoge-
neous and logically rigorous way. That would include instances of G-suits, knowledge about

c© MARIO consortium Page 28 of 73

643808

Figure 3.3: Framester: frame-based lexical linked data. The set of resources that compose
Framester and the interlinks between them.

G-suits, places where G-suits are produced or used, the frames (e.g. Clothing) that include
G suit as a participant, multilingual versions of the predicates and entities associated with
G suits, etc.

3.3.2 CGA ontology

The evaluation of elderly patients represents a complex universe difficult to evaluate and
manage as a unique body. The Comprehensive Geriatric Assessment (CGA) represents one
of the most used and validated approaches to evaluate the elderly subjects. It is defined as
a “multidimensional interdisciplinary diagnostic process focused on determining a frail older
person’s medical, psychological and functional capability in order to develop a coordinated
and integrated plan for treatment and long term follow up.” [52]. It can be roughly viewed as
a set of tests aiming at assessing the medical, psychological and functional capability of a
person.

One of the objectives of the MARIO project is to take advantage of the continuous mon-
itor of a subject so to facilitate its assessment, to improve the communication inside the
team who is in charge of the care of the subject, and to manage and check rehabilitation
plans. In the context of MARIO project a customised CGA has been defined with the follow-
ing instruments: i) Activities of Daily Living (ADL) [28] and Instrumental Activities of Daily
Living (IADL) [33] for evaluating functional disabilities in the daily living; ii) Short-Portable

c© MARIO consortium Page 29 of 73

643808

Figure 3.4: An example of Framester representation for the concept G suit.

Mental Status Questionnaire (SPMSQ) [46] for assessing the cognitive status for dementia
screening; iii) Mini-Nutritional Assessment (MNA) [58] for assessing the nutritional status;
iv) Exton-Smith scale (ESS) [5] for evaluating the risk of pressure sores in patients at high
risk of immobilisation or bed-ridden; v) Comorbidity Illness Rating Scale (CIRS) [12] for care-
fully evaluating the the comorbidities; vi) Evaluation of medication use for assessing the
appropriateness of prescriptions, and the risk for adverse drug reactions.

The contribution of the CGA ontology is twofold. On the one hand, the ontology supports
the execution of the assessment by providing a reference model for storing test information
(such as questions, expected answer etc.). On the other hand, it allows to store the data
resulting from the patient’s assessments.

State of the art

Medicine is one of the first fields that employed ontologies in knowledge-base systems [47].
Ontologies have been used to create an unified medical language [7, 19], to build a com-
puter based patient record13, to allow the representation of clinical narratives [56], to support
professional decisions in the life-cycle of home care treatments [50], to an ontology-driven

13CPRO, http://ontohub.org/bioportal/CPRO.owl

c© MARIO consortium Page 30 of 73

http://ontohub.org/bioportal/CPRO.owl

643808

Table 3.2: Ontology modules imported/reused by the CGA ontology.

Namespace prefix Namespace
cga http://www.ontologydesignpatterns.org/ont/mario/cga.owl#

coh http://www.ontologydesignpatterns.org/ont/mario/cohabitationstatus.owl#

ca http://www.ontologydesignpatterns.org/ont/mario/capabilityassessment.owl#

spmsq http://www.ontologydesignpatterns.org/ont/mario/spmsq.owl#

ess http://www.ontologydesignpatterns.org/ont/mario/ess.owl#

cirs http://www.ontologydesignpatterns.org/ont/mario/cirs.owl#

mna http://www.ontologydesignpatterns.org/ont/mario/mna.owl#

action http://www.ontologydesignpatterns.org/ont/mario/action.owl#

clinicalact http://www.ontologydesignpatterns.org/ont/mario/clinicalact.owl#

time http://www.ontologydesignpatterns.org/ont/mario/time.owl#

adaptive medical questionnaire [8] and so on. To the best of our knowledge it does not exist
any ontology able to represents the results of an execution of our customisation of the CGA.
Some ontologies have been proposed for supporting the (general) medical assessment pro-
cess [9, 3]. This ontologies define high-level concepts for representing medical assessment.
The CGA ontology follows their approach and specialises the high-level concepts where
needed.

Ontology description

The choice of customising approach to the Comprehensive Geriatric Assessment impedes
the re-use of an off-the-shelf ontology for the CGA. The requirements of the ontology have
been directly derived from the form template14 used by physicians during the assessment of
a Physician’s Working Diagnosis (PWD). The competency questions extracted by analyzing
these documents can be found at on-line15.

The ontology is modular. It contains (to be precise, imports) a module for each test in-
cluded in our customisation of the CGA. The modules composing the CGA ontology (together
with the specification of their namespace definition) can be found in Table 3.2.

The submodules addressing specific tests specialise the CGA ontology on the basis of the
specific requirements of the test, e.g. the CGA ontology defines the class cga:Geriatric-

Assessment and the ontology addressing ADL and IADL specialises that class with ca:Capa-

bilityAssessment.

The Figure 3.5 shows the UML class diagram of the CGA ontology. As in [3], a pa-
tient assessment (i.e. cga:GeriatricAssessment) is an action having as participant the
assessed healthrole:Patient and an action:Agent16 who make the assessment. The
agent making the assessment can be either a healthrole:Physician or another kind of
agent (e.g. MARIO). In order to represent the description of how the assessment is to

14http://etna.istc.cnr.it/mario/D5.1/CGA.pdf.
15http://etna.istc.cnr.it/mario/D5.1/CQ-CGA.pdf.
16Since cga:GeriatricAssessment specialises the class action:Action

c© MARIO consortium Page 31 of 73

http://www.ontologydesignpatterns.org/ont/mario/cga.owl#
http://www.ontologydesignpatterns.org/ont/mario/cohabitationstatus.owl#
http://www.ontologydesignpatterns.org/ont/mario/capabilityassessment.owl#
http://www.ontologydesignpatterns.org/ont/mario/spmsq.owl#
http://www.ontologydesignpatterns.org/ont/mario/ess.owl#
http://www.ontologydesignpatterns.org/ont/mario/cirs.owl#
http://www.ontologydesignpatterns.org/ont/mario/mna.owl#
http://www.ontologydesignpatterns.org/ont/mario/action.owl#
http://www.ontologydesignpatterns.org/ont/mario/clinicalact.owl#
http://www.ontologydesignpatterns.org/ont/mario/time.owl#
http://etna.istc.cnr.it/mario/D5.1/CGA.pdf
http://etna.istc.cnr.it/mario/D5.1/CQ-CGA.pdf

643808

action:Task

cga:ClinicalTest cga:correctResponse rdfs:Literal
cga:question rdfs:Literal
cga:score rdfs:Literal

cga:Question
clinicalact:hasMember

clinicalact:hasMember

action:Action

cga:answer rdfs:Literal

cga:Answer

cga:GeriatricAssessment

cga:toQuestion

dul:executesTask

cga:CGA

healthrole:Patient

cga:assessesPatient

time:TemporalEntity

time:atTime

time:atTime

1

1

1

clinicalact:hasMember action:Agent

action:byAgent

Figure 3.5: The UML class diagram of CGA ontology.

be executed, we implemented the Ontology Design Pattern Task Execution17. The action
cga:GeriatricAssessment executes a cga:ClinicalTest which provides a “description” of
how the assessment has to be executed. A cga:ClinicalTest can be composed of other
clinical tests or some cga:Question. Furthermore the CGA ontology allows to store informa-
tion about the answers (i.e. cga:Answer) a patient provides to reply a question.

Example

The Frame 3.1 shows an example of usage of the CGA ontology. The resource :CGA rep-
resents the CGA (intended as “test”), whereas the resource :CGA-20160617 represents the
actual execution of :CGA, performed on 17 June 2016, for assessing the patient :Freddy.
In this example :CGA is composed only of the test :SPSMQ which represents a questionnaire
containing only of the question (i.e. :Q1-SPMSQ) “Who is the president now?”. :Q1-SPMSQ

defines the conditions under which the answer provided by the patient has to be considered
correct (i.e. “Requires only the correct last name”) and the score to be given if the patient
properly responds.

The actual execution of the CGA effectuated by the agent :DrRossi for assessing the pa-
tient :Freddy is represented by :CGA-20160617. Within :CGA-20160617 the Short Portable
Mental Status Questionnaire is performed, i.e. :SPMSQ-20160616. Freddy’s answer (i.e.
:Answer-Freddy-Q1-20160616) to question Q1 is “Mattarella”. The answer has been con-
sidered correct by the :DrRossi who gave the score “1” to it. The answer’s assessment
effectuated by the :DrRossi is represented by :Answer-Freddy-Q1-20160616-Assessment.

17Aldo Gangemi, Task execution ODP http://www.ontologydesignpatterns.org/cp/owl/taskexecution.

owl

c© MARIO consortium Page 32 of 73

http://www.ontologydesignpatterns.org/cp/owl/taskexecution.owl
http://www.ontologydesignpatterns.org/cp/owl/taskexecution.owl

643808

:CGA a cga : C l i n i c a l T e s t ;
c l i n i c a l a c t : hasMember cga :SPMSQ .

:SPMSQ a cga : C l i n i c a l T e s t ;
c l i n i c a l a c t : hasMember cga :Q1−SPMSQ .

:Q1−SPMSQ a cga : Question ;
cga : correctResponse ” Requires only the c o r r e c t l a s t name”@en ;
cga : quest ion ”Who i s the pres iden t now?”@en ;
cga : score ” 1 ” .

:CGA−20160617 a cga : ComprehensiveGeriatr icAssessment ;
ac t i on : byAgent : DrRossi ;
cga : executesTask :CGA ;
c l i n i c a l a c t : hasMember :SPMSQ−20160616 ;
cga : assessesPat ient : Freddy .

:SPMSQ−20160616 a spmsq : Shor tPor tab leMenta lS ta tusQuest ionna i re ;
ac t i on : byAgent : DrRossi ;
cga : executesTask :SPMSQ ;
c l i n i c a l a c t : hasMember : Answer−Freddy−Q1−20160616−Assessment ;
cga : assessesPat ient : Freddy .

: Answer−Freddy−Q1−20160616 a cga : Answer ;
ac t i on : byAgent : Freddy ;
cga : toQuest ion :Q1−SPMSQ ;
cga : answer ‘ ‘ Ma t ta re l l a ’ ’ .

: Answer−Freddy−Q1−20160616−Assessment a spsmq : AnswerAssessment ;
score ‘ ‘ 1 ’ ’ ;
ac t i on : byAgent : DrRossi ;
cga : derivedFrom : Answer−Freddy−Q1−20160616 .

Frame 3.1: An example of usage of the CGA ontology and the SPMSQ ontology serialised
in TURTLE language

c© MARIO consortium Page 33 of 73

643808

coh:Co-HabitationStatus

tis:TimeIndexedSituation
time:TemporalEntitytime:atTime

healthrole:Patienttis:forPatient

spatial:SpatialThing

coh:House coh:Institution

spatial:hasPlace

cga:GeriatricAssessment

cga:score rdfs:Literal

coh:Co-HabitationStatusAssessment
coh:assessesSituation

coh:PostalAddress

coh:hasPostalAddress
generic:name rdfs:Literal

coh:Residence
1

1..*

1

1..*

1..*

person:Person

tis:forEntity
1

Figure 3.6: The UML class diagram of the Co-Habitation status ontology.

CQ1 Does the patient live alone or with relatives/nurse or in an institution?
CQ2 Which is the address of the place where a patient lives?
CQ3 Which is the name of the place where a patient lives?
CQ4 Which is the assessment for a certain co-habitation status of a certain patient?

Table 3.3: Competency questions answered through the Co-Habitation status ontology.

CGA ontology modules

In this section we provide an overview of the ontology modules composing the CGA ontology.

Co-Habitation Status. The aim of the “Co-Habitation Status” ontology is to provide a ref-
erence model for representing the habitation status of a patient so to allow assessment on
it. The ontology, shown in Figure 3.6, answers to the competency questions reported in Ta-
ble 3.3. The prefix coh: is associated with the namespace http://www.ontologydesignpatterns.

org/ont/mario/cohabitationstatus.owl#. The ontology implements the ODP Time In-
dexed Situation18 to represent the coh:Co-HabitationStatus of a healthrole:Patient at a
given time. coh:Co-HabitationStatus can be seen as a n-ary relation connecting i) a pa-
tient, ii) its coh:Residence (an coh:House or an coh:Institution characterised by a name
and a coh:PostalAddress), iii) and possibly some cohabitants. A coh:Co-HabitationStatus

is assessed by a coh:Co-HabitationStatusAssessment which assigns a score to it.

Medication Use. The ontology module “Medication Use” enables to keep track the med-
ication use of a patient thus allowing to make an assessment on it. The ontology, shown
in Figure 3.7, answers to the Competency Question in Table 3.4. The namespace prefix
medicationuse is associated with http://www.ontologydesignpatterns.org/ont/mario/

medicationuse.owl#.
18Aldo Gangemi, Time Indexed Situation ODP, http://ontologydesignpatterns.org/cp/owl/

timeindexedsituation.owl

c© MARIO consortium Page 34 of 73

http://www.ontologydesignpatterns.org/ont/mario/cohabitationstatus.owl#
http://www.ontologydesignpatterns.org/ont/mario/cohabitationstatus.owl#
http://www.ontologydesignpatterns.org/ont/mario/medicationuse.owl#
http://www.ontologydesignpatterns.org/ont/mario/medicationuse.owl#
http://ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl
http://ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl

643808

medicationuse:numberofDrugs xsd:positiveInteger

medicationuse:MedicationUse

tis:TimeIndexedSituation time:atTime

tis:forPatient

healthrole:Patient

time:TemporalEntity

cga:GeriatricAssessment

cga:score rdfs:Literal

medicationuse:MedicationUseAssessment

coh:assessesSituation 1..*

1

Figure 3.7: The UML class diagram of the Medication Use ontology.

CQ1 Which is the assessment for a certain medication use of a certain patient?
CQ2 How many drugs does a patient use?

Table 3.4: Competency questions answered through the Medication Use ontology.

The Medication Use is a Time Indexed Situation 18 involving (i) the Patient targeted of
certain treatments; (ii) the number of medications used by him; (iii) and the time period
in which he takes the medications. A medicationuse:MedicationUse is assessed by a
medicationuse:MedicationUseAssessment which assigns a score to it.

Capability assessment. The ontology module “Capability assessment” allows to store
into a knowledge base the results of an execution of both Activities of Daily Living (ADL)
and Instrumental Activities of Daily Living (IADL). The Figure 3.8 shows the UML class
diagram of the Capability Assessment ontology. The ontology allows to answer the com-
petency questions listed in Table 3.5. The prefix ca: is associated with the namespace
http://www.ontologydesignpatterns.org/ont/mario/capabilityassessment.owl#.

The Capability Assessment ontology defines two cga:GeriatricAssessment, i.e. the
ca:IndexAssessment and ca:CapabilityAssessment. The former allows to represent the
assessment (e.g. an execution of ADL or IADl) made on the basis of a set of capabil-
ity assessments (e.g. Bathing, Dressing etc.). Therefore a ca:IndexAssessment specifies
the set of ca:CapabilityAssessment on which the assessment is made and the resulted
total score (cga:score). The latter, ca:CapabilityAssessment is used to evaluate a pa-
tient’s capability in performing the activities of daily living. A ca:CapabilityAssessment is
an action used to associate a certain patient with a certain ca:CapabilityLevel at a cer-
tain time. The ca:CapabilityAssessment could be derived from a cga:Answer that the pa-
tient provide to reply to a cga:Question (e.g. Do you need assistance for bathing? - No).
ca:CapabilityLevel is used to define the capability levels for a certain capability to assess.

c© MARIO consortium Page 35 of 73

643808

cga:GeriatricAssessment

ca:CapabilityAssessment

generic:name rdfs:Literal
generic:description rdfs:Literal
cga:score xsd:nonNegativeInteger

ca:CapabilityLevel

ca:hasCapabilityLevel

ca:description rdfs:Literal
ca:name rdfs:Literal

ca:Capability

ca:hasCapability cga:Question

cga:isAssessedBy

ca:hasCapabilityLevel
cga:isAssessedBy

cga:score rdfs:Literal

ca:IndexAssessment

clininicalact:hasMember

cga:Answer

cga:derivedFrom

cga:toQuestion

1

1..*

1

1..*

healthrole:Patient
cga:assessesPatient 1

Figure 3.8: The UML class diagram of the Capability Assessment ontology.

cga:GeriatricAssessment

cga:score rdfs:Literal

spmsq:ShortPortableMentalStatusQuestionnaire

clinicalact:hasMember

cga:Question
cga:toQuestion

cga:Answer

cga:derivedFrom
cga:score rdfs:Literal

spmsq:AnswerAssessment

1..* 1

Figure 3.9: The UML class diagram of the SPMSQ ontology.

Each ca:CapabilityLevel is characterised by the ca:Capability (e.g. Bathing) it refers to,
its generic:name (e.g. Receives no assistance), a generic:description (e.g. gets in and
out of tub by self if tub is usual means of bathing) and a cga:score to give if the patient being
assessed shows that level of capability (e.g. 1).

Short Portable Mental Status Questionnaire (SPMSQ). The SPMSQ ontology allows
to store the results of a Short Portable Mental Status Questionnaire into the Knowledge
Base. The Figure 3.9 shows the UML diagram of the ontology. The CQs answered by the
SPMSQ ontology are listed in Table 3.6. The prefix spmsq: is associated with the namespace
http://www.ontologydesignpatterns.org/ont/mario/spmsq.owl#.

An individual of type spmsq:ShortPortableMentalStatusQuestionnaire is created when
the questionnaire for assessing the mental status of a patient is terminated. This instance
provides the total result of the SPMSQ (i.e. cga:score) scored by the assessed Patient. Each
cga:Answer of the Patient being assessed is associated with a spmsq:AnswerAssessment

providing the evaluation of that answer. spmsq:ShortPortableMentalStatusQuestionnaire

c© MARIO consortium Page 36 of 73

http://www.ontologydesignpatterns.org/ont/mario/spmsq.owl#

643808

CQ1 Which are the capabilities needed to assess the ADL/IADL?
CQ2 Which is the ADL/IADL question used to assess the capability level of a certain

patient?
CQ3 Which is the description of a certain capability level?
CQ4 Which is the score in ADL/IADL associated with a certain capability level?
CQ5 Which is the score of a correct answer of a certain question?
CQ6 Which is the total score of the ADL/IADL questionare of a certain patient at a certain

time?
CQ7 Which was the level of capability of the activities of daily living (such as, bathing,

dressing, toileting, transferring, controlling urination and bowel movement, feeding)
of a patient at a certain time?

CQ8 Which was the level of capability of the instrumental activities of the daily living
(such as, using a telephone, shopping, preparing food, housekeeping, laundering,
getting means of transportation, having responsibility of own medications, manag-
ing finances) of a patient at a certain time?

Table 3.5: Competency questions answered through the Capability Assessment ontology.

CQ1 Which is the total score of the SPMSQ at a certain time?
CQ2 Which is the score associated with an answer of the SPMSQ?

Table 3.6: Competency questions answered through the SPMSQ ontology.

aggregates all the spmsq:AnswerAssessment and provides the sum scored answering to the
individual questions. An example of usage of the SPMSQ ontology is shown in the Frame 3.1.

Exton-Smith Scale (ESS). The ESS ontology allows to store into the KB the results of
an evaluation of a Patient through the Exton-Smith Scale. The UML class diagram of the
ESS ontology is shown in Figure 3.10. The CQs answered through the ESS ontology are
listed in Figure 3.7. The namespace prefix ess: is associated with the value http://www.

ontologydesignpatterns.org/ont/mario/ess.owl#.

The Exton-Smith Scale aims at evaluating the pressure sores risk of a Patient. ess:Ex-

ton-SmithScaleAssessment represents an execution of this assessment. It associates the
Patient that is being assessed with a cga:score and with the observed patient conditions
that induced to this score. Moreover, ess:Exton-SmithScaleAssessment associates (through
ess:hasPressureSoresRisk) a Patient with a ess:PressureSoresRisk. An individual of type
ess:PressureSoresRisk represents a level of pressure sores risk on the ESS scale (e.g.
“Score 16-20: minimum risk”). A ess:PressureSoresRisk is characterised by a generic:name

(e.g. “minimum risk ”) and the interval (i.e. cga:scoreMin and cga:scoreMax) of values as-
sociated with the pressure sores risk (e.g. 16-20). The object property ess:hasCondition is
used to associate an ess:Exton-SmithScaleAssessment with the current ess:PatientCon-
dition observed in the assessed Patient. The ontology defines five different types of pa-
tient condition that are evaluated by the ESS: (i) the ess:PatientGeneralCondition; (ii) the

c© MARIO consortium Page 37 of 73

http://www.ontologydesignpatterns.org/ont/mario/ess.owl#
http://www.ontologydesignpatterns.org/ont/mario/ess.owl#

643808

cga:GeriatricAssessment

cga:score xsd:nonNegativeInteger

ess:Exton-SmithScaleAssessment

ess:hasCondition

cga:Question or
cga:ClinicalTest

cga:score xsd:nonNegativeInteger
generic:name rdfs:Literal

ess:PatientCondition

cga:isAssessedBy
ess:Activity

ess:Incontinence

ess:MentalState

ess:MobilityInBed

ess:PatientGeneralCondition

1

clinicalact:hasMember

1

clinicalact:hasMember

1

clinicalact:hasMember

1

clinicalact:hasMember

1

cga:scoreMin xsd:nonNegativeInteger
cga:scoreMax xsd:nonNegativeInteger
generic:name rdfs:Literal

ess:PressureSoresRisk

ess:hasPressureSoresRisk
1..*

Figure 3.10: The UML class diagram of the ESS ontology.

ess:MentalState; (iii) the ess:Activity; (iv) the ess:Incontinence; and (v) the ess:Mo-

bilityInBed.

Each ess:PatientCondtion has a generic:name (e.g. “Doubly incontinent”) and a cga:-

score (e.g. 1) that can contribute to the result of the ess:Exton-SmithScaleAssessment.

Cumulative Illness Rating Scale (CIRS). The CIRS ontology allows to store the results
of an evaluation of a patient with the Cumulative Illness Rating Scale. The UML class dia-
gram of the CIRS ontology is shown in Figure 3.11. The CQs answered through the ESS
ontology are listed in Figure 3.8. The namespace prefix ess: is associated with the value
http://www.ontologydesignpatterns.org/ont/mario/cirs.owl#. The ontology aims at
evaluating the illness severity of the patient’s biological system (e.g. cardiovascular system,
respiratory system etc.). Individuals of the class cirs:BiologicalSystem are characterised
by a generic:name (e.g.respiratory system) and a generic:description (e.g. lungs, bronchi,
trachea). cirs:BiologicalSystemAssessment represents an action aiming at assessing a
cirs:BiologicalSystem. cirs:BiologicalSystemAssessment assigns at a certain time a
cirs:CIRSRating (e.g. Moderate,3) to a cirs:BiologicalSystem. A cirs:CIRSRating has a
generic:name (e.g. Moderate) and a cga:score (e.g. 3), which may contribute to the illness
severity score and to the comorbidity index. An instance of cirs:CIRSAssessment evaluates
the illness severity score and the comorbidity index of a Patient at certain time. It indicates
(through clinicalact:hasMember) the cirs:BiologicalSystemAssessment used to compute
these two scores.

Mini Nutritional Assessment (MNA). The Mini Nutritional Assessment (MNA) aims at
evaluating the nutritional status of a patient at a certain time. The MNA ontology allows to

c© MARIO consortium Page 38 of 73

http://www.ontologydesignpatterns.org/ont/mario/cirs.owl#

643808

CQ1 How was the condition of patient at a certain time? Was it Bad, Poor, Fair or Good?
CQ2 How was the mental state of a patient at a certain time? Was it Stuporosous,

Confused, Apathetic or Alert?
CQ3 Which is the range of ESS scores associated with the high/medium/low risk of

sores?
CQ4 Which is the score associated with a certain patient activity level/condition/mental

state/incontinence level/mobility?
CQ5 Which was the patient’s activity level at a certain time? Did s/he stay in the bed

all the day? Did s/he need of a chairfast? Did s/he walk with help? Or, was s/he
ambulant?

CQ6 Which was the patient’s incontinence level at a certain time? Was s/he double
incontinent? Was s/he usually incontinent of urine? Was s/he occasionally inconti-
nent? Or, wasn’t s/he incontinent?

CQ7 Which was the patient’s mobility in bed at a certain time? Was s/he immobile, very
limited, slightly limited, or full?

CQ8 Which was the patient’s score at the exton-smith scale (ESS) at a certain time?

Table 3.7: Competency questions answered through the ESS ontology.

CQ1 Which is the name of a rating in the CUMULATIVE ILLNESS RATING SCALE
(C.I.R.S.)?

CQ2 Which was the patient’s illness rating for a biological system at a certain time?
CQ3 Which was the patient’s COMORBIDITY INDEX (CIRS-CI) at a certain time?
CQ4 Which was the patient’s ILLNESS SEVERITY SCORE (CIRS-IS) at a certain time?

Table 3.8: Competency questions answered through the CIRS ontology.

c© MARIO consortium Page 39 of 73

643808

cga:GeriatricAssessment

cirs:comorbidityIndex xsd:integer
cirs:illnessSeverityScore xsd:double

cirs:CIRSAssessment

cirs:BiologicalSystemAssessment

generic:description rdfs:Literal
generic:name rdfs:Literal

cirs:BiologicalSystem

generic:name rdfs:Literal
cga:score xsd:nonNegativeInteger

cirs:CIRSRating

clinicalact:hasMember
1..* cirs:hasRating

1

cirs:assessesBiologicalSystem 1

Figure 3.11: The UML class diagram of the CIRS ontology.

store the results of the Mini Nutritional Assessment into the Knowledge Base. The UML class
diagram of the MNA ontology is shown in Figure 3.12. Refer to the OWL file for the CQs. The
namespace prefix mna: is associated with the value http://www.ontologydesignpatterns.

org/ont/mario/mna.owl#. The result of a Mini Nutritional Assessment is represented by
mna:MiniNutritionalAssessment that associates a certain Patient with the score (i.e. cga-

:score) of the assessment and the resulting Malnutrition Indicator Score (represented by
mna:MNARating). An mna:MNARating has a generic:name (e.g. well-nourished) and a quanti-
tative value indicating the range of MNA score it refers to (e.g. a Patient is considered well-
nourished if her score in the MNA is greater than 24). A mna:MiniNutritionalAssessment is
made on the basis of other four assessments: (i) the mna:AnthropometricAssessment; (ii) the
mna:GeneralAssessment; (iii) the mna:DietaryAssessment; and (iv) the mna:SelfAssessment.
Each of these assessment is made evaluating other assessments. For instance, the mna:-

AnthropometricAssessment is made on the basis of the mna:BMIAsssessment, the mna:Calf-

CircumferenceAssessment, the mna:MACAssessment and the mna:WeightLossAssessment. Each
assessment defines its rating scale, e.g. the rating scale of mna:BMIAsssessment is mna:BMI-

Rating.

3.3.3 Tagging ontology

Tagging has become a key feature of the todays social media. A tag is a label (precisely, a
free-word keyword) that is attached to someone or something for many purposes: identifying,
categorising, commenting, voting, reacting etc.

The aim of the tagging ontology is to represent a tagging action, i.e the action performed
by an agent that attaches a label or something with a well-defined semantics (eg. a concept
or a frame etc.) to some entity. In the context of the MARIO project tags will be associated

c© MARIO consortium Page 40 of 73

http://www.ontologydesignpatterns.org/ont/mario/mna.owl#
http://www.ontologydesignpatterns.org/ont/mario/mna.owl#

643808

cirs:hasRatingcga:GeriatricAssessment

cga:score xsd:nonNegativeInteger

mna:MiniNutritionalAssessment mna:AnthropometricAssessment

mna:BMIAssessment

cga:score xsd:nonNegativeInteger

mna:BMIRatingcirs:hasRating
1

measurement:QuatitativeValue

measurement:QuatitativeValue or
measurement:Interval

mna:hasBMI 1

mna:hasBMI
mna:hasHeight
mna:hasWeight

1

clinicalact:hasMember
1

mna:MNATestsRating

generic:description rdfs:Literal

mna:MNARating
1

measurement:hasQuantitativeValue 1

Figure 3.12: The UML class diagram of the MNA ontology.

with multimedia contents (e.g. photos, videos, audios and so on.), events (e.g. festivals,
birthdays, daily events etc.) or personal memories (which can be considered as a particular
kind of events in a person’s life). Hence, the tagging ontology provides a reference model for
representing tags in MARIO and can be used for interacting with patients in a variety of tasks
that requires remembrances, e.g., stimulating the patient’s memory, entertaining the patient
with multimedia contents associated with particular moments of her life, etc.

State of the art

Several ontologies [35, 31, 34] and Ontology Design Patterns19 have been proposed to con-
ceptualise the tagging action so far. [29] surveyed the state of the art in the tagging ontolo-
gies. In the most of them the tagging concept is represented as reified n-ary relationship
between the tagger (the agent who gives the tag), the tag (often a keyword taken from a
folksonomy), the entity tagged, and the date when the action happened. Some of them tried
to associate the tag with its meaning [35], to express the polarity of the tagging 19 [31] or to
attempt to treat tagging as a vote 20.

Ontology description

The ontology we propose does not deviate from the state of the art significantly. However,
our ontology allows MARIO to use not only simple free-word keywords, but also individuals
with a well defined semantics or even complex named graphs. More in general, the designed
ontology allows to answer the competency questions reported on Table 3.9.

19Aldo Gangemi, http://ontologydesignpatterns.org/cp/owl/tagging.owl
20http://info.slis.indiana.edu/ dingying/uto.owl

c© MARIO consortium Page 41 of 73

http://ontologydesignpatterns.org/cp/owl/tagging.owl
http://info.slis.indiana.edu/~dingying/uto.owl

643808

CQ1 Which is the tag associated with a certain photo or events?
CQ2 Who has given a tag to a certain entity?
CQ3 Which is the entity associated to a certain tag?

Table 3.9: Competency questions answered through the Tagging ontology.

tagging:Tagging

tagging:label rdfs:Literal

tagging:Tag

tagging:usingTag

1..*

tiime:TemporalEntity

time:atTime
1..*

action:Action

event:Event or
media:Media

tagging:forEntity

1..*

action:Agent

action:byAgent

1..*

Figure 3.13: The UML class diagram of tagging ontology.

The figure 3.13 shows the ontology diagram. The class tagging:Tagging21 is a reification
of the relationship between the agent who made the tag, the tag itself and the entity tagged.
It can be also viewed as an action whose agent is the tagger and the patient is the entity
tagged. An individual of tagging:Tagging has to define at least an agent that performs the
action (action:byAgent property), an entity target for the tagging action (action:forEntity
property), the tag used (tagging:usingTag property) and the date time when this action is
performed (time:atTime property).

The class tagging:Tag represents any object that can be used to identify, categorize, de-
scribe or comment the entity being tagged. Being object of a the predicate tagging:hasTag

implies to be a Tag, therefore a richer description such as a frame, a named graph, or a
FRED [23] graph can be used as tag for an entity. Furthermore, the datatype property
“rdfs:label” can be used to associate an individual of Tag with the text it represents.

Currently, an individual of tagging:Tagging can be connected either to an individual of
the class event:Event or to an individual of the class media:Media (such as photos, videos,
audios etc.). A multimedia content (i.e., an individual of the class media:Media) can be
associated with an event by the object property event:hasEvent, e.g. a video taken at a
birthday party. Finally, we defined a property chain to ensure that the tags of an event are
inherited by all multimedia content connected to it, e.g. if the birthday party has the tag
“Birthday”, then the video associated to it inherits the tag “Birthday”.

21The prefix tagging is associated with the namespace http://www.ontologydesignpatterns.org/ont/

mario/tagging.owl. Refer to Table 3.10 for the namespaces of the imported ontology modules.

c© MARIO consortium Page 42 of 73

http://www.ontologydesignpatterns.org/ont/mario/tagging.owl
http://www.ontologydesignpatterns.org/ont/mario/tagging.owl

643808

Namespace prefix Namespace
action http://www.ontologydesignpatterns.org/ont/mario/action.owl

time http://www.ontologydesignpatterns.org/ont/mario/time.owl

event http://www.ontologydesignpatterns.org/ont/mario/event.owl

media http://www.ontologydesignpatterns.org/ont/mario/media.owl

Table 3.10: Ontology modules imported/reused by the Tagging ontology.

: January 20 1971 a t ime : Tempora lEnt i ty .

: John 51s t b i r t hday a event : Event ;
s p a t i a l : hasPlace : P iper Club ;
t ime : atTime : January 20 1971 .

: John p ic tu re a media : Image .

: P iper Club a s p a t i a l : Spa t ia lTh ing .

: t ag John 51s t b i r t hday a tagg ing : Tag .

: t agg ing John 51s t b i r t hday a tagg ing : Tagging ;
tagg ing : f o r E n t i t y : John 51s t b i r thday , : John p ic tu re ;
tagg ing : usingTag : tag John 51s t b i r t hday .

Frame 3.2: An example of usage of the tagging ontology serialized in TURTLE language

Example

MARIO might use the tagging ontology for annotating a picture about the birthday of his
patient John. This picture was takes at John’s 51st birthday on January 20 1971. Thus, the
tagging ontology can be used for tagging the picture with this knowledge. Frame 3.2 shows
the RDF graph resulting from the usage of tagging ontology for the previous example.

3.3.4 Affordance ontology

In robotics, behaviour selection (also called behaviour arbitration) is the process of deciding
which action to execute at each point of time. For the sake of simplicity, most implemented
systems use a built-in fixed priority ordering of behaviours, i.e. the agent’s control strategy
is embedded into a collection of preprogrammed condition-action pairs. This strategy, called
purely reactive, has proven effective for a variety of problems that can be completely specified
at design-time [37]. However, it is inflexible at run-time due to its inability to store new infor-
mation in order to adapt the robot’s behaviour on the basis of its experience. Moreover, the
burden of predicting all possible input states and choosing the corresponding output actions

c© MARIO consortium Page 43 of 73

http://www.ontologydesignpatterns.org/ont/mario/action.owl
http://www.ontologydesignpatterns.org/ont/mario/time.owl
http://www.ontologydesignpatterns.org/ont/mario/event.owl
http://www.ontologydesignpatterns.org/ont/mario/media.owl

643808

The user wants to
listen to some

music

The battery level
is critical Recharge

Play Music10

11

(a)

The user wants to
listen to some

music

The battery level
is critical Recharge

Play Music10

1

-10

(b)

Figure 3.14: Two equivalent action-selection schemes.

is completely left to the designer.

Behaviour-based approaches to action selection can be considered as an extension of
purely reactive strategy. These approaches are related to the concept of affordance. The
notion of affordance has been introduced by Gibson [24] who devised a theory of how ani-
mals perceive opportunities for action. Gibson called these opportunity affordance. He sug-
gested that the environment offers the agents (people or animals) opportunities for action.
For instance, a door can have the affordance of “openability”. These action opportunities
are latent in the environment and independent from individual’s ability to recognize them, but
affordances are always dependent on agent’s capability. For example, to a thief an open
window can have an affordance of “climbing”, but not so to an infant who is not tall enough
to reach the window.

MARIO uses a behaviour-based approach to action selection which relies on both the
notion of affordance devised by Gibson [24] and the proposal of Pattie Maes [36]. The overall
behavioural capacity of MARIO is decomposed into a set of behaviours (or Tasks). Each
behaviour is associated with states of the world (that we call situation) in which the task
could be activated together with a so-called affordance strength. The affordance strength
indicates how much a given behaviour is relevant for a certain situation. The behaviour
selection mechanism is implemented by the MARIO’s Task Manager. This component is
responsible for detecting the active situations and consequently activating the Task having
the highest activation level. The activation level of a task is a dynamic value computed by
summing the affordance strengths of the active situation associated with the task.

The classical notion of affordance suggests that the physical objects (e.g. a door) offer the
opportunity of performing an action (e.g. open). We claim that, not only in physical objects,
but also complex situations (e.g. the user want to listen to some music) afford actions (e.g.
play music). A complex situation can be seen as the fullfilment at a certain time of certain
conditions. These conditions may involve: temporal aspects (e.g. lunchtime may afford the
task remember the user to take the pills), the perception of certain physical objects, the
receiving of a command (e.g. I want to listen to some music), or, even the existence of
certain state-of-affairs (e.g. the situation the user is sitting on a chair for a long while may
afford the task entertain the user).

Consider the action-selection scheme shown in Figure 3.14a. The situations are repre-

c© MARIO consortium Page 44 of 73

643808

sented by ovals, whereas tasks are rectangles. In this model only two situations are relevant
for choosing the task to execute. The first situation is active when the user wants to listen to
some music. This situation could be activated either when MARIO receives a vocal command
(e.g. “Mario, I want to listen to some music”) or when the user presses the button “Music” on
the touchscreen. The second situation is activated when the battery level becomes critical
and the robot needs to recharge. Intuitively, when the battery level is critical the robot should
stop any other activity and go to the recharge station. With an action selection scheme this
behaviour could be achieved by giving to the task Recharge the greatest affordance strength.
For instance, a possible lifecycle of the system could be:

time0: The system starts. There is no active situation. The activation level for both the tasks
is 0.

time1: The user touches the button Music on the touchscreen and the task manager activates
the situation: “The user wants to listen to some music”. The activation level of the the
task Play Music is 10, whereas the activation level of the task Recharge is 0. The task
manager starts the task Play Music.

time2...9: The situation “The user wants to listen to some music” is still active, and the Task
manager keeps active the task Play Music.

time10: The task Play Music is still active. The battery level becomes critical. The task manager
activates the situation “The battery level is critical”. The activation level of the the task
Play Music is 10, whereas the activation level of the task Recharge is 11. The task
manager stops Play Music and starts Recharge.

It is worth noticing that the same behaviour could be achieved by an infinite number of ac-
tion selection schemes, i.e. any other scheme in which the activation level of Recharge is
always22 greater than Play Music. For instance, the action-selection scheme in Figure 3.14b
induces the same behaviour of that in Figure 3.14a.

Remark.

For explanatory reasons, the above discussion made the implicit assumptions that the robot
can execute only one task at a time and it chooses the task with the highest activation level.
The strategy for choosing the task to start/stop depends on the actual implementation of the
task manager. The task manager could realize more sophisticated mechanisms overcoming
these assumptions. This document aims at proposing a model for supporting the task man-
ager in deciding the behaviour to execute. The definition of the actual strategy for selecting
the task to execute is out of the scope of this document.

22Always means for any set of active situations.

c© MARIO consortium Page 45 of 73

643808

aff:affordanceStrength xsd:double

aff:Affordance

aff:Situation

action:Task

aff:hasTask

1

dul:Situation

dul:Task

generic:name rdfs:Literal
generic:description rdfs:Literal

aff:TaskParameter
aff:hasTaskParameter

fn:Frame

aff:satifies

aff:Frame

aff:holds

1

aff:isHeldBy

time:TemporalEntity

time:atTime

Figure 3.15: The UML class diagram of the Affordance ontology

CQ1 Which is the strength of an Affordance?
CQ2 Which tasks are afforded in a certain situation?
CQ3 How should an agent behave in a certain situation?
CQ4 Which are the parameters involved in certain task?

Table 3.11: Competency questions answered through the Affordance ontology.

State of the art

There exist few examples of ontologies conceptualizing the idea of affordances. In litera-
ture, the notion of affordance has been seen as relation between the environment and the
agent [54] or as qualities of objects in environment taken with reference to an observer [45,
44, 53]. Our approach is closer to the characterization proposed by Stoffregen [54], albeit
we abstract the notion environment to a more general concept of situation, i.e. a situation
embeds all the environment’s characteristics perceived by the robot and possibly other con-
ditions (e.g. involving time, the receiving of a commands etc.).

Ontology description

The proposed pattern relies on the descriptions and situations ODP23 [17], combined with a
frame-based representation scheme [40]. Figure 3.15 shows the UML class diagram of the
ontology.

Table 3.11 reports the competency questions that identify the requirements associated
with the modelling of the affordance ontology.

23Aldo Gangemi, Description and Situation ODP http://ontologydesignpatterns.org/wiki/

Submissions:DescriptionAndSituation

c© MARIO consortium Page 46 of 73

http://ontologydesignpatterns.org/wiki/Submissions:DescriptionAndSituation
http://ontologydesignpatterns.org/wiki/Submissions:DescriptionAndSituation

643808

Ontology Namespace prefix Namespace
Action action: http://www.ontologydesignpatterns.org/ont/mario/action.owl

Time time: http://www.ontologydesignpatterns.org/ont/mario/time.owl

FrameNet fn: http://www.ontologydesignpatterns.org/ont/framenet/tbox/

DOLCE dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#

Table 3.12: Ontology modules imported or re-used by the Affordance ontology.

The ontology modules imported or re-used by the Affordance ontology are those reported
in Table 3.1224.

The name space prefix aff is associated with the value http://www.ontologydesign-

patterns.org/ont/mario/affordance.owl#.

Affordances are represented as individuals of the class Affordance, which is modelled
as a n-relation connecting:

• a class of situations that represents states of the world (i.e., any individual of the class
Frame). This relation is expressed the object property holds;

• an agent’s behaviour (aka a task), which is any individual of the class action:Task.
This relation is expressed by the object property hasTask.

• a quantity that indicates how much a a behaviour is relevant for the the occurrence of a
certain frame. This relation is expressed by the datatype property affordanceStrength,
whose range is xsd:double.

According to [21], the intended meaning of a frame (represented in our ontology by the
class Frame) can be summarised as a small-sized and richly interconnected structure, used
to organize our knowledge, as well as to interpret, process or anticipate information. Frames
identify classes of situations and have been investigated in linguistics by Fillmore [15], in AI
by Minsky [38], and more recenty in the Semantic Web [21, 40]. We modelled the class
Frame as a sub-class of fn:Frame25, which is a class re-used from the OWL version [40] of
FrameNet [2].

Situations are states of the world fulfilling certain conditions. These conditions may in-
volve: temporal aspects, the perception of physical entities, the receiving of a command
or the existence of certain state-of-affairs. Following the Description and Situation ODP we
made a basic distinction, between a Frame (or description) and a Situation, which is a frame
occurence. The class Situation is modelled as sub-class of the class dul:Situation26 that
is re-used from DOLCE Ultra-lite [22]. Any individual of Situation is modelled as a time
indexed situation, i.e., a state of the world anchored to a certain time point (e.g. at 11am

24The Framenet ontology can be found at http://www.ontologydesignpatterns.org/ont/framenet/tbox/
schema.owl

25The prefix fn: stands for the namespace http://www.ontologydesignpatterns.org/ont/framenet/

tbox/.
26The prefix dul: stands for the namespace http://www.ontologydesignpatterns.org/ont/DUL.owl#.

c© MARIO consortium Page 47 of 73

http://www.ontologydesignpatterns.org/ont/mario/action.owl
http://www.ontologydesignpatterns.org/ont/mario/time.owl
http://www.ontologydesignpatterns.org/ont/framenet/tbox/
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
http://www.ontologydesignpatterns.org/ont/framenet/tbox/schema.owl
http://www.ontologydesignpatterns.org/ont/framenet/tbox/schema.owl
http://www.ontologydesignpatterns.org/ont/framenet/tbox/
http://www.ontologydesignpatterns.org/ont/framenet/tbox/
http://www.ontologydesignpatterns.org/ont/DUL.owl#

643808

the user expresses the willingness to listen to jazz music). We re-used the time-indexed
situation ODP27 for modelling time constraints for situations. Hence, a Situation is related
to time:TemporalEntity28 that allows to represent the notion of time either as a time interval
(i.e., any individual of the class time:TimeInterval), which has a start and an end temporal
instant, or an instant itself (i.e., any individual of the class time:Instant) that is associated
with temporal values by means of the datatype property time:inXSDDataTime whose range
is xsd:dateTime29.

Affordance ontology models agent’s behaviours as tasks. Those tasks are represented
as individuals of the class action:Task that can be parameterised by specific parameters
represented as individuals of the class TaskParameter. The relations between tasks and
task parameters are expressed by the object property hasParameter. For example, a certain
task “Play music” can be associated with a parameter “Jazz” that specifies the genre of the
music to play.

Example

Frame 3.3 shows the RDF graph resulting from the usage of affordance ontology for rep-
resenting the situation depicted in figure 3.14b. The example describes the status of the
knowledge base at the time point 1 of the example used in the section 3.3.4 to introduce the
mechanism of affordance. :UserWantsToListenToSomeMusic represents the situation where
a :user request to listen to some music of a particular :genre. :BatteryInCritalLevel rep-
resents the situation where the :batteryLevel of a certain :agent is critical. :affordance-
PlayMusicBatteryCritical, :affordancePlayMusicUserWantsToListenToSomeMusic and :af-

fordanceRechargeBatteryCritical represents the three affordance relations depicted in fig-
ure 3.14b as arrows. :sitTime1 represents the situation at time 1. :actPlayAtTime1 is the
action carried out by :MARIO to cope with the situation :sitTime1.

27http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl.
28The prefix time: stands for the namespace http://www.ontologydesignpatterns.org/ont/mario/

time.owl#.
29The prefix xsd: stands for the namespace http://www.w3.org/2001/XMLSchema#.

c© MARIO consortium Page 48 of 73

http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl
http://www.ontologydesignpatterns.org/ont/mario/time.owl#
http://www.ontologydesignpatterns.org/ont/mario/time.owl#
http://www.w3.org/2001/XMLSchema#

643808

: UserWantsToListenToSomeMusic a a f f : Frame ;
fn : hasFrameElement : genre , : user .

: genre a fn : FrameElement , a f f : TaskParameter .

: B a t t e r y I n C r i t a l L e v e l a a f f : Frame ;
fn : hasFrameElement : ba t te ryLeve l , : agent .

: ba t t e r yLeve l a fn : FrameElement .

: agent a fn : FrameElement .

: user a fn : FrameElement .

: PlayMusic a ac t i on : Task ;
a f f : hasParameter : genre .

: Recharge a a f f : Task .

: a f f o r d a n c e P l ay M u s i c B a t t e r y C r i t i ca l a a f f : Affodance ;
a f f : a f fo rdanceSt rength ”−10”ˆ ˆ xsd : double ;
a f f : holds : B a t t e r y I n C r i t a l L e v e l ;
a f f : hasTask : PlayMusic .

: affordancePlayMusicUserWantsToListenToSomeMusic a a f f : Affodance ;
a f f : a f fo rdanceSt rength ” 1 0 ” ˆ ˆ xsd : double ;
a f f : holds : UserWantsToListenToSomeMusic ;
a f f : hasTask : PlayMusic .

: a f f o rdanceRecha rgeBa t te ryCr i t i ca l a a f f : Affodance ;
a f f : a f fo rdanceSt rength ” 1 ” ˆ ˆ xsd : double ;
a f f : holds : B a t t e r y I n C r i t a l L e v e l ;
a f f : hasTask : Recharge .

: s i tT ime1 a a f f : S i t u a t i o n ;
: user : Freddy ;
: genre : Jazz ;
a f f : s a t i s f i e s : UserWantsToListenToSomeMusic

: actPlayAtTime1 a ac t i on : Act ion ;
ac t i on : byAgent :MARIO ;
ac t i on : executes : PlayMusic .

Frame 3.3: An example of usage of the affordance ontology serialized in TURTLE language

c© MARIO consortium Page 49 of 73

Mario Knowledge Management System

MARIO is an intelligent robot that is able to address a variety of knowledge-intensive tasks re-
quired to provide efficient support to patients affected by dementia. Examples of knowledge-
intensive tasks are the Comprehensive Geriatric Assessment (CGA), the triggering of specific
entertainment activities according to as much specific patient’s needs or emotional statuses
(e.g., MARIO decides to play the favorite patient’s song if it recognises that the patient is sad),
the behavioural tasks (e.g., take the patient to the bathroom), the multi-modal interaction with
the patient that includes understanding and speech capabilities, etc. Enabling these tasks
means to provide MARIO with mechanisms for organising, accessing, storing and interacting
with knowledge. These mechanisms should be accessible by any software components part
of the MARIO architecture that actually implements intelligent tasks. Hence, the Knowledge
Management System (KMS) is the framework that provides MARIO with such capabilities.

Reasoner

Lizard

Mario Ontology Network

MON API

Triple store

REST

Figure 4.1: Informal architecture of the Mario Knowledge Management System.

Figure 4.1 shows an informal graphical representation of the KMS. The KMS is composed
by the following parts:

• a triple store that serves as physical storage for the knowledge managed by MARIO.

c© MARIO consortium Page 50 of 73

643808

The knowledge is expressed by using RDF as reference standard.

• an ontology network (i.e., MON described in Chapter 3) that organises the knowledge
as a set of interlinked ontologies;

• a reasoner that provides reasoning capabilities to the KMS. These reasoning capabil-
ities allows MARIO to infer new knowledge by using the axiomatisations provided by
the ontologies of the MON and both knolwedge available from the triple store and that
coming as streams from external devices (e.g., sensors, kinect) and software compo-
nents;

• a modular set of software components, called Lizard, that is designed to provide a
framework that autamatically generates a middleware API between the ontology net-
work and the external systems part of the MARIO architecture. Those external systems
are meant to interact with the ontology network in order to carry on specific knowledge-
intensive tasks (e.g., Comprehensive Geriatric Assessment). Hence, Lizard is respon-
sible for enabling the efficient and transparent access to the ontology network. More
details can be found in Section 4.1;

• a modular set of software components that are generated and managed by Lizard dy-
namically. These software components implement the MON Application Programming
Interface (API) and provide programmatic access to the knowledge stored in the triple
store and organised according to the MON;

• a REST layer that enable to access MON API via HTTP requests.

4.1 Lizard

In recent years a number of frameworks have been proposed to foster the adoption of Se-
mantic Web (SW) technologies in software development. Examples are Apache Jena1 [11],
the OWL API2 [27] or rdf4j3 (previously known as Sesame [10]). These frameworks provide
the basic building blocks on top of which it is possible to design and implement complex sys-
tems that rely on RDF, OWL and SPARQL. However, they require developers with extensive
knowledge of SW technologies and Knowledge Engineering. This knowledge is mandatory in
order to use these frameworks effectively. Hence, we designed a software architecture that
tackles the challenging goal of easing the software development of knowledge-aware sys-
tems by filling the gap between SW technologies and architectural and programming styles
that are more familiar to software engineers and developers. Addressing such a goal is rele-
vant to MARIO as it provides the robotic framework with a Knowledge Management System
(KMS) that hides to other components the technicalities associated with the way it organises,
represents, stores and exchanges knowledge.

1https://jena.apache.org/
2http://owlapi.sourceforge.net/
3http://rdf4j.org/

c© MARIO consortium Page 51 of 73

https://jena.apache.org/
http://owlapi.sourceforge.net/
http://rdf4j.org/

643808

Our framework is called Lizard and is as a component of the Mario Knowledge Manage-
ment System. Lizard is an Object-RDF mapper, such as SuRF4 or ActiveRDF5 [43]. An
Object-RDF mapper is a system that exposes the RDF triple sets as sets of resources and
seamlessly integrates them into the Object Oriented paradigm. However, differently from
existing systems Lizard provides a RESTful layer that exposes Object Oriented paradigm by
using the REST architectural style over HTTP. This is an added value in our scenario as the
software parts of MARIO are developed in different languages that communicate via HTTP.
Additionally, Lizard embeds an Access Control Management System (ACMS) that enables
the setup of specific access policies in order to guarantee the access (either in read or write
mode) to specific knowledge areas only to a set of allowed entities/systems. For example, an
application that performs some entertaiment activity (e.g. play music) would not be allowed
to access knowledge about the Continuous Geriatric Assessment (CGA). Hence, the ACMS
allows Lizard to deal with some important data management aspects regarding data access,
security and data privacy.

Figure 4.2: High-level diagram presenting the intuition behind Lizard.

Figure 4.2 provides the reader with an high level diagram that informally introduces the
basic intuition behind Lizard. Basically, Lizard dinamically generates Java and HTTP REST
API from the MARIO Ontology Network (MON). Those API reflects the semantics of MON
and allows transparent access to the knowledge base. This means that a client application
(i.e., any component of the MARIO robotic framework) can access the knowledge base with-
out any prior knowledge of the ontologies used within the KMS. For example, this avoids
client applications to deal with OWL and RDF or to interact with a knowledge base by means
of SPARQL queries.

4.1.1 Requirements

The main requirements of Lizard are the following:
4https://pythonhosted.org/SuRF/
5https://github.com/ActiveRDF/ActiveRDF

c© MARIO consortium Page 52 of 73

https://pythonhosted.org/SuRF/
https://github.com/ActiveRDF/ActiveRDF

643808

R1. Generation of procedural API modelled from an OWL ontology. Lizard has to pro-
duce procedural API starting from an OWL ontology. This requirements allows Lizard to
generate Java API that follows the semantics expressed by a source ontology. Hence,
Lizard allows the Knowledge Base Management System to bind software API to onto-
logical artifacts.

R2. Generation of HTTP REST API modelled from an OWL ontology. Lizard has to pro-
duce HTTP REST API starting from an OWL ontology. This requirements allows Lizard
to generate a REST API that follows the semantics expressed by a source ontology.
Hence, such an ontology can be accessed as a service by external components via
HTTP requests based on commons GET, POST, PUT and update. Providing access to
the MON via HTTP REST is a central requirement as REST over HTTP has been cho-
sen as the reference architectural style in MARIO. With respect to this Lizard allows the
Knowledge Base Management System to bind HTTP REST API to ontological artifacts.

R3. Dynamic adaptivity of produced API to the MARIO Ontology Network (MON).
Lizard has to adapt the API it produces and exposes (both Java and REST) accord-
ing to any change occurring in any part of the MON. By change we mean any addition,
deletion or update of the MON ranging from a single axiom to a whole ontology. This
requirement is crucial in order to keep valid at runtime the binding between the API
produced by Lizard and the ontologies connected by the MON.

R2. programmatic access to the Knowledge Base of MARIO via Java. The Java API
produced by Lizard has to grant access to the Knowledge Base (KB) to other com-
poents of the MARIO architecture. The KB consists of a set of datasets expressed
as RDF triples, which in turn are modelled according to the semantics expressed by
the ontologies of the MON and stored in a triplestore (e.g., Virtuoso6 or Apache Jena
TDB7). The access via Java allows MARIO to perform operationg such as: query the
KB, fetch specific piece of knowledge expressed as RDF, update the KB, and delete
RDF from the KB.

R3. programmatic access to the Knowledge Base of MARIO HTTP REST. The REST
API produced by Lizard has to grant access to the Knowledge Base (KB) to other com-
poents of the MARIO architecture. The access via REST has to reflect all the operations
enabled via Java, i.e., query the KB, fetch specific piece of knowledge expressed as
RDF, update the KB, and delete RDF from the KB.

R4. transparent access (with respect to client application) to the MON. Other com-
ponents of MARIO has to be unaware about how the Knowledge Base Management
System (KBMS) models the ontologies of the MON and stores RDF triples in the KB.
This requirement allows the KBMS to hide ontology design choices and spefic imple-
mentation details to other MARIO components that want to interact with knowledge.

6http://virtuoso.openlinksw.com/.
7https://jena.apache.org/documentation/tdb/.

c© MARIO consortium Page 53 of 73

http://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/tdb/

643808

4.1.2 Modules and use cases

The requirements presented in Section 4.1.1 are addressed by different modules of Lizard. In
fact, Lizard is designed as a modular software architectural that is composed of the following
modules:

• Lizard core that provides the KBMS with core functionalities. These core functionalities
include the creation and updated of API from MON;

• Lizard API Manager that is responsible of the life-cycle management of created API.
Namely, this modules can activate, stop and resume any module that represents API
generated by Lizard core;

• Ontology API that is any module identified by the API generated by Lizard core and
managed by the Lizard API Manager.

Figure 4.3: UML diagram representing the use cases associated with Lizard core.

Figure 4.3 reports the use cases associated with the Lizard core module. These use
cases are graphically represended by using the UML notation, i.e. the use case diagram.
The following tables provide detailed descriptions about these use cases.

Use Case ID UC-1
Title Create Java API

c© MARIO consortium Page 54 of 73

643808

UC-1
Description Lizard core creates a Java API from an OWL ontology of

the MON. The API reflects the semantics of the ontology
and can be used to access the KB programmatically.

Parent
Includes UC-3
Actor(s) Lizard Agent
Goal To create a Java API.
Trigger An ontology is added to the MON.
Preconditions
Minimal Post conditions The API has been generated.
Success Post conditions The API can be loaded into the KBMS.

Use Case ID UC-2
Title Create HTTP REST API
Description Lizard core creates a HTTP REST API from an OWL on-

tology of the MON. The API reflects the semantics of the
ontology and can be used to access the KB via HTTP
requests.

Parent
Includes UC-3
Actor(s) Lizard Agent
Goal To create a HTTP REST API.
Trigger An ontology is added to the MON.
Preconditions The Java API have been created.
Minimal Post conditions The HTTP API are generated.
Success Post conditions The HTTP API can be loaded into the KBMS.

Use Case ID UC-3
Title Observe MON
Description Lizard core constantly observes the MON in order to

trigger an appropriate action corresponding to a MON’s
change.

Parent
Includes
Actor(s) Lizard core
Goal To observe changes occurring to the MON.
Trigger Some change occurs in the MON.

c© MARIO consortium Page 55 of 73

643808

UC-3
Preconditions
Minimal Post conditions The change is detected.
Success Post conditions An event associated with a detected change is propa-

gated.

Use Case ID UC-4
Title Delete Java API
Description Lizard core deletes a Java API if it is not required any-

more.
Parent
Includes UC-3
Actor(s) Lizard Agent
Goal To handle the request of deletion of a JAVA API associ-

ated with one of ontology of the MON.
Trigger Some change occurs in the MON.
Preconditions
Minimal Post conditions The deletion request is received and propagated the

Lizard API Manager.
Success Post conditions The Lizard API Manager returns a reply that notifies the

successful deletion.

Use Case ID UC-5
Title Delete REST API
Description Lizard core deletes a REST API if it is not required any-

more.
Parent
Includes UC-3
Actor(s) Lizard Agent
Goal To handle the request of deletion of a REST API associ-

ated with one of ontology of the MON.
Trigger Some change occurs in the MON.
Preconditions
Minimal Post conditions The deletion request is received and propagated the

Lizard API Manager.
Success Post conditions The Lizard API Manager returns a reply that notifies the

successful deletion.

c© MARIO consortium Page 56 of 73

643808

Use Case ID UC-6
Title Update Java API
Description Lizard core update a Java API when a update of the MON

is detected. An update is performed in terms of (i) the
deletion of the previous version of the API and (ii) cre-
ation of the new version of the API.

Parent UC-1, UC-4
Includes
Actor(s) Lizard Agent
Goal To handle the request of update of a Java API associated

with one of ontology of the MON.
Trigger Some change occurs in the MON.
Preconditions
Minimal Post conditions The update request is received and propagated the

Lizard API Manager.
Success Post conditions The Lizard API Manager returns a reply that notifies the

successful update.

Use Case ID UC-7
Title Update HTTP REST API
Description Lizard core update a Java API when a update of the MON

is detected. An update is performed in terms of (i) the
deletion of the previous version of the API and (ii) cre-
ation of the new version of the API.

Parent UC-1, UC-4
Includes
Actor(s) Lizard Agent
Goal To handle the request of update of a Java API associated

with one of ontology of the MON.
Trigger Some change occurs in the MON.
Preconditions
Minimal Post conditions The update request is received and propagated the

Lizard API Manager.
Success Post conditions The Lizard API Manager returns a reply that notifies the

successful update.

c© MARIO consortium Page 57 of 73

643808

Figure 4.4: UML diagram representing the use cases associated with Lizard API Manager.

Figure 4.4 shows the use case diagram associated with the Lizard API Manager module.
These use cases address the life-cycle management of the API generated from ontology
artifacts part of the MON. The following tables provide detailed descriptions about these use
cases.

Use Case ID UC-8
Title Start Java API
Description Lizard API Manager activates a Java API that has been

previously loaded by Lizard core.
Parent
Includes
Actor(s) Lizard Agent
Goal A Java API is activated and can be used in order to ac-

cess the knowledge managed by the Knowledge Man-
agement System.

Trigger
Preconditions The Java API that is object of the activation has been

previously created.
Minimal Post conditions The Java API is activated.

c© MARIO consortium Page 58 of 73

643808

UC-8
Success Post conditions The Java API is active and running.

Use Case ID UC-9
Title Start REST API
Description Lizard API Manager activates a REST API that has been

previously loaded by Lizard core.
Parent
Includes UC-8
Actor(s) Lizard Agent
Goal A REST API is activated and can be used in order to

access via HTTP the knowledge managed by the Knowl-
edge Management System.

Trigger
Preconditions The REST API that is object of the activation has been

previously created.
Minimal Post conditions The REST API is activated.
Success Post conditions The REST API is active and running. This means that

alswo the corresponding Java API has been activated
successfully

Use Case ID UC-10
Title Stop Java API
Description Lizard API Manager deactivates a Java API that was ac-

tive.
Parent
Includes UC-11
Actor(s) Lizard Agent
Goal A Java API is deactivated and cannot be used anymore

to access the knowledge managed by the Knowledge
Management System.

Trigger
Preconditions The Java API that is object of the deactivation has been

previously activated.
Minimal Post conditions The Java API is deactivated.
Success Post conditions The Java API is deactivated and cannot be used any-

more. If a REST API exists and is active for the same
ontology artifact, then also this REST API is deactivated.

c© MARIO consortium Page 59 of 73

643808

Use Case ID UC-11
Title Stop REST API
Description Lizard API Manager deactivates a REST API that was

active.
Parent
Includes
Actor(s) Lizard Agent
Goal A REST API is deactivated and cannot be used any-

more to access via HTTP the knowledge managed by
the Knowledge Management System.

Trigger
Preconditions The REST API that is object of the deactivation has been

previously activated.
Minimal Post conditions The REST API is deactivated.
Success Post conditions The REST API is deactivated and cannot be used any-

more.

Use Case ID UC-12
Title Load Java API
Description A Java API is loaded into the Lizard API Manager.

Hence, the Lizard API Manager can begin the manage-
ment of its life-cycle.

Parent
Includes
Actor(s) Lizard core
Goal To load a Java API previously created by Lizard core.
Trigger
Preconditions The Java API has been previously created.
Minimal Post conditions The Java API is loaded.
Success Post conditions The Java API is loaded and its life-cycle can be managed

by the Lizard API Manager.

Use Case ID UC-13
Title Load REST API

c© MARIO consortium Page 60 of 73

643808

UC-13
Description A REST API is loaded into the Lizard API Manager.

Hence, the Lizard API Manager can begin the manage-
ment of its life-cycle.

Parent
Includes UC-12
Actor(s) Lizard core
Goal To load a REST API previously created by Lizard core.
Trigger
Preconditions The REST API has been previously created and the cor-

responding JAVA API activated.
Minimal Post conditions The REST API is loaded.
Success Post conditions The REST API is loaded and its life-cycle can be man-

aged by the Lizard API Manager.

Use Case ID UC-14
Title Unload Java API
Description A Java API is unloaded from the set of APIs managed by

the Lizard API Manager. Hence, the Lizard API Manager
cannot manage its life-cycle anymore. If the Java API
is active, then it is first deactivated. If also a REST API
exists, then such a REST API is unloaded.

Parent
Includes UC-15
Actor(s) Lizard core
Goal To unload a Java API previously loaded.
Trigger
Preconditions The Java API has been loded.
Minimal Post conditions The Java API is unloaded.
Success Post conditions The Java API is ubloaded and its life-cycle cannot be

managed by the Lizard API Manager anymore.

Use Case ID UC-15
Title Unload REST API
Description A REST API is unloaded from the set of APIs managed

by the Lizard API Manager. If the REST API is active,
then it is first deactivated.

Parent

c© MARIO consortium Page 61 of 73

643808

UC-15
Includes
Actor(s) Lizard core
Goal To unload a REST API previously loaded.
Trigger
Preconditions The REST API has been previously loaded.
Minimal Post conditions The REST API is unloaded.
Success Post conditions The REST API is unloaded and its life-cycle cannot be

managed by the Lizard API Manager anymore.

c© MARIO consortium Page 62 of 73

643808

4.2 Mario Ontology Network API

The Mario Ontology Network (MON) API is composed by the set of API whom Lizard dynami-
cally generates. It is meant to address requirement R4, i.e., transparent access (with respect
to client application) to the MON. Hence, the MON API is designed to provide software mod-
ules that allow client applications to query, retrieve, store, update and delete knowledge from
the KMS witouht any knowledge of the MON and the triple store. Figure 4.5 shows the use
case diagram of the MON API expressed by using the UML notation.

Figure 4.5: UML diagram representing the use cases associated with the MON API.

Use Case ID UC-16
Title Query triple store
Description The specific MON API provides mechanisms that allows

to query the kwnoledge available in the triple store ac-
cording to its formalisation provided by one or more cor-
responding ontologies of the MON.

Parent
Includes
Actor(s) Client
Goal To fetch desired knowledge from the triple store.

c© MARIO consortium Page 63 of 73

643808

UC-16
Trigger
Preconditions
Minimal Post conditions The knowledge is retrieved.
Success Post conditions The knowledge is returned to the client actor.

Use Case ID UC-17
Title Create individual
Description The specific MON API provides mechanisms to create

new individuals that populate the MON.
Parent
Includes
Actor(s) Client
Goal To populate the MON with new individuals.
Trigger
Preconditions
Minimal Post conditions A new individual can be created in the MON.
Success Post conditions A new individual is created in the MON.

Use Case ID UC-18
Title Delete individual
Description The specific MON API provides mechanisms to delete

existing individuals that populate the MON.
Parent
Includes
Actor(s) Client
Goal To remove individuals from the MON.
Trigger
Preconditions
Minimal Post conditions An individual can be deleted from the MON.
Success Post conditions An individual is deleted from the MON.

Use Case ID UC-19
Title Update individual
Description The specific MON API provides mechanisms to update

existing individuals that populate the MON.

c© MARIO consortium Page 64 of 73

643808

UC-19
Parent
Includes
Actor(s) Client
Goal To update individuals of the MON.
Trigger
Preconditions
Minimal Post conditions An individual can be updated from the MON.
Success Post conditions An individual is updated from the MON.

4.3 Reasoner

The reasoner is the software component of the MARIO KMS that provides methods for ex-
ecuting basic reasoning services. An example of reasoning service that this component
should provide is the mechanism for enabling the behaviour selection in MARIO. As previ-
ously introduced in Section 3.3.4, behaviour selection (also called behaviour arbitration) is
the process of deciding which action to execute at each point of time. We designed an ontol-
ogy, i.e. the Affordance ontology, that is part of the MARIO Ontology Network and enalbes
the representation of the knowledge associated with the notion of affordance as introduced
by Gibson [24]. Basically, the affordance tells MARIO what family of situations allows it to
perform certain actions. These family of situations (called frames) are known a priori by
MARIO (e.g. the patient is bored), but the occurrencies of these frames in the real world are
not and they should be recognised (e.g. the patient yawns repeatedly at a certain time of
the day she is not usually sleepy). The recognition of situations in the real world and their
disambiation with respect to a set of known frames is called reconciliation. The reconciliation
is a reasoning task. Similarly, the selection of the action to perform when a certain frame is
recognised is a reasoning task as well.

Another kind reasoning is dynamic data fusion coming from different sources (e.g. sen-
sors, background knowledge, lingustic system, etc.). The dynamic data fusion would rely on
consistency checking as well as rule-based inference to integrate and interpret hetorgeneous
knowledge homogeneously in order to avoid inconsistencies with respect to the MARIO On-
tology Network.

Currently, the reasoner is under development and we are designing its core on top of the
Apache Jena Inference. It will provide the KMS with the the following facilities:

• consistency checking;

• knowledge reconciliation;

• enrichment, i.e. inferring new facts;

c© MARIO consortium Page 65 of 73

643808

• rule-based inference.

We plan to finalise the implementation of the reasoning component by the release of next
deliverables.

4.4 Architecture

In this section we provide a formal description of the software modules of the architecture
introduces in Figure 4.1 at the beginning of Chapter 4. We make use of the UML notation to
formalise the architecture. Namely, Figure 4.6 shows the component diagram describing the
software architecture of the KMS. The component diagram presents the following software
components:

Figure 4.6: UML component diagram representing the software architecture of the MARIO
KMS.

• Reasoner, which implements the reasoning facilities described in Section 4.3. It ex-
poses the interface IReasoning that can be used by the other components of the KMS
to access the reasoning services;

c© MARIO consortium Page 66 of 73

643808

• Lizard core, which implements the core functionalities that address the use cases 1-7. It
interacts with the reasoner component by using the interface IReasoning and exposes
the interface IAPIProvide the allows other components to access the software API
generated from ontologies of the MON;

• Lizard API Manager, which implements the functionalities that address the use cases 9-
15. It accesses the API generated by Lizard core by means of the interface IAPIProvide

and exposes the interfaces IControl and IRESTControl. These interfaces allow the
Lizard API Manager to manage the life-cycle (i.e., load, unload, activate and deactivate)
of the Java and REST API, respectively. We remark that these APIs are automatically
generated from ontological artifacts by Lizard core.

• MON API that is any software implementation of an API generated from ontological arti-
facts. A MON API is controlled by Lizard API Manager by means of the inteface named
IControl and exposes the interfaces IQuery and IUpdate that provide programmatic
access to the knowledge base with query and update facilities (cf. use cases 15-19);

• MON REST API that is any RESTful implementation of an API generated from ontolog-
ical artifacts. A MON API is controlled by Lizard API Manager by means of the inteface
named IControl and exposes the interfaces IRESTQuery and IRESTUpdate that provide
HTTP access to the knowledge base with query and update facilities (cf. use cases 15-
19). Basically, a MON REST API is a HTTP REST wrapper around a MON API. In fact,
a MON REST API interacts with its corresponding MON API by means of the interfaces
IQuery and IUpdate exposed by the latter.

c© MARIO consortium Page 67 of 73

Bibliography

[1] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. “The Berkeley FrameNet Project”.
In: 36th Annual Meeting of the Association for Computational Linguistics and 17th In-
ternational Conference on Computational Linguistics, COLING-ACL ’98, August 10-14,
1998, Université de Montréal, Montréal, Quebec, Canada. Proceedings of the Confer-
ence. Ed. by Christian Boitet and Pete Whitelock. Morgan Kaufmann Publishers / ACL,
1998, pp. 86–90. URL: http://aclweb.org/anthology/P/P98/P98-1013.pdf.

[2] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. “The Berkeley FrameNet Project”.
In: Proc. of the 17th international conference on Computational linguistics. Montreal,
Quebec, Canada, 1998, pp. 86–90. DOI: http://dx.doi.org/10.3115/980845.
980860.

[3] Bénédicte Batrancourt et al. “A core ontology of instruments used for neurological,
behavioral and cognitive assessments”. In: Proceedings of the 6th International Con-
ference on Formal Ontology in Information Systems FOIS. (Toronto, Canada). 2010,
pp. 185–198.

[4] David L. Bisset. D1.1 MARIO System Specification for Pilot 1. Tech. rep. MARIO cosor-
tium, Dec. 2015.

[5] MR Bliss, R McLaren, and AN Exton-Smith. “Mattresses for preventing pressure sores
in geriatric patients.” In: Monthly Bulletin of the Ministry of Health and the Public Health
Laboratory Service 25 (1966), p. 238.

[6] Eva Blomqvist et al. “Experimenting with eXtreme Design”. In: Proceedings of the 17th
International Conference on Knowledge Engineering and Management by the Masses
(EKAW). (Lisbon, Portugal). Ed. by Philipp Cimiano and Helena Sofia Pinto. Vol. 6317.
Lecture Notes in Computer Science. DOI: 10.1007/978-3-642-16438-5 9. Springer,
2010, pp. 120–134.

[7] Olivier Bodenreider. “The unified medical language system (UMLS): integrating biomed-
ical terminology”. In: Nucleic acids research 32.suppl 1 (2004), pp. D267–D270.

[8] M. M. Bouamrane, A. Rector, and M. Hurrell. “Gathering Precise Patient Medical His-
tory with an Ontology-Driven Adaptive Questionnaire”. In: Proceedings of 21st IEEE
International Symposium on Computer-Based Medical Systems. 2008, pp. 539–541.

[9] Matt-Mouley Bouamrane, Alan Rector, and Martin Hurrell. “Development of an ontology
for a preoperative risk assessment clinical decision support system”. In: Proceedings
of 22nd IEEE International Symposium on Computer-Based Medical Systems. 2009,
pp. 1–6.

c© MARIO consortium Page 68 of 73

http://aclweb.org/anthology/P/P98/P98-1013.pdf
http://dx.doi.org/http://dx.doi.org/10.3115/980845.980860
http://dx.doi.org/http://dx.doi.org/10.3115/980845.980860

643808

[10] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. “Sesame: A generic ar-
chitecture for storing and querying rdf and rdf schema”. In: Proceedings of the 1st
International Semantic Web Conference (ISWC 2002). Sardinia, Italia: Springer, 2002,
pp. 54–68.

[11] Jeremy J Carroll et al. “Jena: implementing the semantic web recommendations”. In:
Proceedings of the 13th international World Wide Web conference on Alternate track
papers & posters. New York, NY, USA: ACM, 2004, pp. 74–83. DOI: 10.1145/1013367.
1013381.

[12] Yeates Conwell et al. “Validation of a measure of physical illness burden at autopsy:
the Cumulative Illness Rating Scale”. In: Journal of the American Geriatrics Society
41.1 (1993), pp. 38–41.

[13] Christiane Fellbaum, ed. WordNet: an electronic lexical database. MIT Press, 1998.

[14] Charles J Fillmore. “Frame semantics and the nature of language”. In: Annals of the
New York Academy of Sciences 280.1 (1976), pp. 20–32.

[15] C.J. Fillmore. “The Case for the Case”. In: Universals in Linguistic Theory. Ed. by E.
Bach and R. Harms. New York: Rinehart and Winston, 1968.

[16] Aldo Gangemi. “What’s in a Schema?” In: Ontology and the Lexicon: A Natural Lan-
guage Processing Perspective. Cambridge, UK: Cambridge University Press, 2010,
pp. 144–182.

[17] Aldo Gangemi and Peter Mika. “Understanding the Semantic Web through Descrip-
tions and Situations”. In: On The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE - OTM Confederated International Conferences, CoopIS, DOA,
and ODBASE, Proceedings. (Catania, Sicily, Italy). Ed. by Robert Meersman, Za-
hir Tari, and Douglas C. Schmidt. Vol. 2888. Lecture Notes in Computer Science.
DOI:10.1007/978-3-540-39964-3 44. Springer, 2003, pp. 689–706. ISBN: 3-540-20498-
9.

[18] Aldo Gangemi, Roberto Navigli, and Paola Velardi. “The OntoWordNet Project: Ex-
tension and Axiomatization of Conceptual Relations in WordNet”. In: On The Move to
Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE - OTM Confederated
International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy,
November 3-7, 2003. Ed. by Robert Meersman, Zahir Tari, and Douglas C. Schmidt.
Vol. 2888. Lecture Notes in Computer Science. Springer, 2003, pp. 820–838. ISBN:
3-540-20498-9. DOI: 10.1007/978-3-540-39964-3_52. URL: http://dx.doi.org/10.
1007/978-3-540-39964-3_52.

[19] Aldo Gangemi, Domenico Pisanelli, and Geri Steve. “Ontology integration: Experi-
ences with medical terminologies”. In: Proceedings of the 1st International Conference
on Formal Ontology in Information Systems FOIS. (Rome,Italy). Vol. 46. 1998, pp. 98–
94.

c© MARIO consortium Page 69 of 73

http://dx.doi.org/10.1145/1013367.1013381
http://dx.doi.org/10.1145/1013367.1013381
http://dx.doi.org/10.1007/978-3-540-39964-3_52
http://dx.doi.org/10.1007/978-3-540-39964-3_52
http://dx.doi.org/10.1007/978-3-540-39964-3_52

643808

[20] Aldo Gangemi and Valentina Presutti. “Ontology Design Patterns”. In: Handbook on
Ontologies, 2nd Edition. Ed. by Steffen Staab and Rudi Studer. International Hand-
books on Information Systems. DOI:10.1007/978-3-540-92673-3 10. Berlin, Germany,
2009, pp. 221–243.

[21] Aldo Gangemi and Valentina Presutti. “Towards a Pattern Science for the Semantic
Web”. In: Semantic Web 1.1-2 (2010), pp. 61–68. DOI: 10.3233/SW-2010-0020. URL:
http://dblp.uni-trier.de/db/journals/semweb/semweb1.html#GangemiP10.

[22] Aldo Gangemi et al. “Sweetening ontologies with DOLCE”. In: Knowledge engineering
and knowledge management: Ontologies and the semantic Web. Vol. 2473. Lecture
Notes in Computer Science. Berlin, Germany: Springer, 2002, pp. 166–181. DOI: 10.
1007/3-540-45810-7_18.

[23] Aldo Gangemi et al. “Semantic Web Machine Reading with FRED”. In: Semantic Web
Preprint.Preprint (2016), to appear.

[24] James Gibson. “The theory of affordances”. In: Perceiving, acting, and knowing: To-
ward an ecological psychology (1977), pp. 67–82.

[25] Michael Grüninger and Mark S. Fox. In: Benchmarking – Theory and Practice. Ed.
by Asbjørn Rolstadås. IFIP Advances in Information and Communication Technology.
DOI: 10.1007/978-0-387-34847-6 3. Boston, MA, USA: Springer, 1995. Chap. The
Role of Competency Questions in Enterprise Engineering, pp. 22–31.

[26] Karl Hammar. “Ontology Design Pattern Property Specialisation Strategies”. In: Pro-
ceedings of Knowledge Engineering and Knowledge Management - 19th International
Conference (EKAW). (Linköping, Sweden). Ed. by Krzysztof Janowicz et al. Vol. 8876.
Lecture Notes in Computer Science. DOI:10.1007/978-3-319-13704-9 13. Springer,
2014, pp. 165–180. ISBN: 978-3-319-13703-2.

[27] Matthew Horridge and Sean Bechhofer. “The owl api: A java api for owl ontologies”. In:
Semantic Web 2.1 (2011), pp. 11–21.

[28] Sidney Katz et al. “Studies of illness in the aged: the index of ADL: a standardized
measure of biological and psychosocial function”. In: Jama 185.12 (1963), pp. 914–
919.

[29] Hak Lae Kim et al. “The state of the art in tag ontologies: a semantic model for tagging
and folksonomies”. In: Proceedings of the International Conference on Dublin Core and
Metadata Applications. (Berlin, Germany). Ed. by Jane Greenberg and Wolfgang Klas.
Metadata for Semantic and Social Applications. 2008, pp. 128–137.

[30] Karin Kipper, Hoa Trang Dang, and Martha Stone Palmer. “Class-Based Construction
of a Verb Lexicon”. In: Proceedings of the Seventeenth National Conference on Ar-
tificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence, July 30 - August 3, 2000, Austin, Texas, USA. Ed. by Henry A. Kautz and
Bruce W. Porter. AAAI Press / The MIT Press, 2000, pp. 691–696. ISBN: 0-262-51112-
6. URL: http://www.aaai.org/Library/AAAI/2000/aaai00-106.php.

[31] Torben Knerr. Tagging ontology-towards a common ontology for folksonomies. 2006.
URL: https://tagont.googlecode.com/files/TagOntPaper.pdf.

c© MARIO consortium Page 70 of 73

http://dx.doi.org/10.3233/SW-2010-0020
http://dblp.uni-trier.de/db/journals/semweb/semweb1.html#GangemiP10
http://dx.doi.org/10.1007/3-540-45810-7_18
http://dx.doi.org/10.1007/3-540-45810-7_18
http://www.aaai.org/Library/AAAI/2000/aaai00-106.php
https://tagont.googlecode.com/files/TagOntPaper.pdf

643808

[32] Maddalen Lopez de Lacalle, Egoitz Laparra, and German Rigau. “Predicate Matrix:
extending SemLink through WordNet mappings”. In: Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation (LREC-2014), Reykjavik,
Iceland, May 26-31, 2014. Ed. by Nicoletta Calzolari et al. European Language Re-
sources Association (ELRA), 2014, pp. 903–909. URL: http://www.lrec-conf.org/
proceedings/lrec2014/summaries/589.html.

[33] MP Lawton and ELMNE M BRODY. “Assessment of older people: self-maintaining and
instrumental activities of daily living.” In: Nursing Research 19.3 (1970), p. 278.

[34] Freddy Limpens et al. “NiceTag Ontology: tags as named graphs”. In: Proceeding of
the 1st International Workshop on Social Networks Interoperability SNI. 2009.

[35] Steffen Lohmann, Paloma Dıaz, and Ignacio Aedo. “MUTO: the modular unified tagging
ontology”. In: Proceedings of the 7th International Conference on Semantic Systems
I-SEMANTICS. (Graz, Austria). Ed. by Chiara Ghidini et al. ACM International Con-
ference Proceeding Series. ACM, 2011, pp. 95–104. ISBN: 978-1-4503-0621-8. DOI:
10.1145/2063518.2063531. URL: http://doi.acm.org/10.1145/2063518.2063531.

[36] Pattie Maes. “The Dynamics of Action Selection”. In: Proceedings of the 11th Inter-
national Joint Conference on Artificial Intelligence (IJCAI). Detroit, Michigan: Morgan
Kaufmann Publishers Inc., 1989, pp. 991–997.

[37] Maja J. Mataric. “Behaviour-based control: examples from navigation, learning, and
group behaviour”. In: Journal of Experimental & Theoretical Artificial Intelligence 9.2-3
(1997), pp. 323–336. DOI: 10.1080/095281397147149.

[38] M. Minsky. “A Framework for Representing Knowledge”. In: The Psychology of Com-
puter Vision. Ed. by P. Winston. McGraw-Hill, 1975.

[39] Roberto Navigli and Simone Paolo Ponzetto. “BabelNet: The Automatic Construction,
Evaluation and Application of a Wide-Coverage Multilingual Semantic Network”. In:
Artificial Intelligence 193 (2012), pp. 217–250.

[40] Andrea G. Nuzzolese, Aldo Gangemi, and Valentina Presutti. “Gathering Lexical Linked
Data and Knowledge Patterns from FrameNet”. In: Proceedings of the sixth interna-
tional conference on Knowledge Capture (K-CAP). (Banff, AB, Canada). Ed. by Mark
A. Musen and Óscar Corcho. DOI:10.1145/1999676.1999685. ACM, 2011, pp. 41–48.
ISBN: 978-1-4503-0396-5.

[41] Andrea Giovanni Nuzzolese, Aldo Gangemi, and Valentina Presutti. “Gathering lexical
linked data and knowledge patterns from FrameNet”. In: Proceedings of the 6th Inter-
national Conference on Knowledge Capture (K-CAP 2011), June 26-29, 2011, Banff,
Alberta, Canada. Ed. by Mark A. Musen and Óscar Corcho. ACM, 2011, pp. 41–48.
ISBN: 978-1-4503-0396-5. DOI: 10.1145/1999676.1999685. URL: http://doi.acm.
org/10.1145/1999676.1999685.

[42] Alex Oliver and Timothy Smiley. “Multigrade predicates”. In: Mind 113.452 (2004),
pp. 609–681.

c© MARIO consortium Page 71 of 73

http://www.lrec-conf.org/proceedings/lrec2014/summaries/589.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/589.html
http://dx.doi.org/10.1145/2063518.2063531
http://doi.acm.org/10.1145/2063518.2063531
http://dx.doi.org/10.1080/095281397147149
http://dx.doi.org/10.1145/1999676.1999685
http://doi.acm.org/10.1145/1999676.1999685
http://doi.acm.org/10.1145/1999676.1999685

643808

[43] Eyal Oren, Benjamin Heitmann, and Stefan Decker. “ActiveRDF: Embedding Semantic
Web data into object-oriented languages”. In: Web Semantics: Science, Services and
Agents on the World Wide Web 6.3 (2008), pp. 191–202.

[44] Jens Ortmann and Desiree Daniel. “An ontology design pattern for referential qualities”.
In: Proceedings of the 10th International Semantic Web Conference (ISWC). Springer.
Bonn, Germany, 2011, pp. 537–552.

[45] Jens Ortmann et al. “An egocentric semantic reference system for affordances”. In:
Semantic Web 5.6 (2014), pp. 449–472.

[46] Eric Pfeiffer. “A short portable mental status questionnaire for the assessment of or-
ganic brain deficit in elderly patients”. In: Journal of the American Geriatrics Society
23.10 (1975), pp. 433–441.

[47] Domenico M Pisanelli. Ontologies in medicine. Vol. 102. IOS Press, 2004.

[48] Valentina Presutti et al. “eXtreme Design with Content Ontology Design Patterns”. In:
Proceedings of the Workshop on Ontology Patterns (WOP). (Washington, DC, USA).
Ed. by Eva Blomqvist et al. Vol. 516. CEUR Workshop Proceedings. CEUR-WS.org,
2009.

[49] Valentina Presutti et al. “The role of Ontology Design Patterns in Linked Data projects”.
In: Proceedings of the 35th International Conference on Conceptual Modeling (ER
2016). Gifu, Japan: Springer, 2016, to appear.

[50] David Riaño et al. “An Ontology for the Care of the Elder at Home”. In: Proceedings
of the 12th Conference on Artificial Intelligence in Medicine AIME. (Verona, Italy). Ed.
by Carlo Combi, Yuval Shahar, and Ameen Abu-Hanna. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 235–239.

[51] Jacobo Rouces, Gerard de Melo, and Katja Hose. “FrameBase: Representing N-Ary
Relations Using Semantic Frames”. In: The Semantic Web. Latest Advances and New
Domains - 12th European Semantic Web Conference, ESWC 2015, Portoroz, Slove-
nia, May 31 - June 4, 2015. Proceedings. Ed. by Fabien Gandon et al. Vol. 9088.
Lecture Notes in Computer Science. Springer, 2015, pp. 505–521. ISBN: 978-3-319-
18817-1. DOI: 10.1007/978-3-319-18818-8_31. URL: http://dx.doi.org/10.1007/
978-3-319-18818-8_31.

[52] Laurence Z Rubenstein et al. “Impacts of geriatric evaluation and management pro-
grams on defined outcomes: overview of the evidence”. In: Journal of the American
Geriatrics Society 39.S1 (1991), 8S–16S.

[53] Robert Shaw, Michael T Turvey, and William Mace. “Ecological psychology: The con-
sequence of a commitment to realism”. In: Cognition and the symbolic processes 2
(1982), pp. 159–226.

[54] Thomas A Stoffregen. “Affordances as properties of the animal-environment system”.
In: Ecological Psychology 15.2 (2003), pp. 115–134.

[55] Anselm L. Strauss and Juliet M. Corbin. Basics of Qualitative Research: Techniques
and Procedures for developing Grounded Theory. DOI: 10.4135/9781452230153. Sage
Publications Inc., 1998.

c© MARIO consortium Page 72 of 73

http://dx.doi.org/10.1007/978-3-319-18818-8_31
http://dx.doi.org/10.1007/978-3-319-18818-8_31
http://dx.doi.org/10.1007/978-3-319-18818-8_31

643808

[56] Cui Tao et al. “A semantic web ontology for temporal relation inferencing in clinical
narratives”. In: Proceedings of the Annual Symposium of American Medical Informatics
Association AMIA. (Washington DC, USA). 2010.

[57] Mark Van Assem, Aldo Gangemi, and Guus Schreiber. “Conversion of WordNet to a
standard RDF/OWL representation”. In: Proceedings of the Fifth International Confer-
ence on Language Resources and Evaluation (LREC?06), Genoa, Italy. 2006, pp. 237–
242.

[58] Bruno Vellas et al. “The Mini Nutritional Assessment (MNA) and its use in grading the
nutritional state of elderly patients”. In: Nutrition 15.2 (1999), pp. 116–122.

c© MARIO consortium Page 73 of 73

	Introduction
	Work Package 5 Objectives
	Purpose and Target Group of the Deliverable
	Relations to other Activities in the Project
	Document Outline
	About MARIO

	Background
	Semantic Web Languages: RDF, OWL and SPARQL
	Extensible Markup Language (XML)
	Resource Description Framework (RDF)
	Web Ontology Language (OWL)
	SPARQL

	Pattern-based Ontology Design
	Ontology design patterns
	eXtreme Design

	Graphical notation

	MARIO Ontology Network
	MARIO Ontology Network Knowledge areas
	Ontology design methodology
	MON modules
	Framester
	CGA ontology
	Tagging ontology
	Affordance ontology

	Mario Knowledge Management System
	Lizard
	Requirements
	Modules and use cases

	Mario Ontology Network API
	Reasoner
	Architecture

	report: Yes
	prototype: Off
	demonstrator: Off
	other: Off
	public: Yes
	confidential: Off
	restricted: Off

